A Virtual Learning Environment for Deaf Children: Design and Evaluation

The object of this research is the design and evaluation of an immersive Virtual Learning Environment (VLE) for deaf children. Recently we have developed a prototype immersive VR game to teach sign language mathematics to deaf students age K- 4 [1] [2]. In this paper we describe a significant extension of the prototype application. The extension includes: (1) user-centered design and implementation of two additional interactive environments (a clock store and a bakery), and (2) user-centered evaluation including development of user tasks, expert panel-based evaluation, and formative evaluation. This paper is one of the few to focus on the importance of user-centered, iterative design in VR application development, and to describe a structured evaluation method.

Towards Finite Element Modeling of the Accoustics of Human Head

In this paper, a new formulation for acoustics coupled with linear elasticity is presented. The primary objective of the work is to develop a three dimensional hp adaptive finite element method code destinated for modeling of acoustics of human head. The code will have numerous applications e.g. in designing hearing protection devices for individuals working in high noise environments. The presented work is in the preliminary stage. The variational formulation has been implemented and tested on a sequence of meshes with concentric multi-layer spheres, with material data representing the tissue (the brain), skull and the air. Thus, an efficient solver for coupled elasticity/acoustics problems has been developed, and tested on high contrast material data representing the human head.

A Unified Framework for a Robust Conflict-Free Robot Navigation

Many environment specific methods and systems for Robot Navigation exist. However vast strides in the evolution of navigation technologies and system techniques create the need for a general unified framework that is scalable, modular and dynamic. In this paper a Unified Framework for a Robust Conflict-free Robot Navigation System that can be used for either a structured or unstructured and indoor or outdoor environments has been proposed. The fundamental design aspects and implementation issues encountered during the development of the module are discussed. The results of the deployment of three major peripheral modules of the framework namely the GSM based communication module, GIS Module and GPS module are reported in this paper.

Integrating Agents and Computational Intelligence Techniques in E-learning Environments

In this contribution a newly developed elearning environment is presented, which incorporates Intelligent Agents and Computational Intelligence Techniques. The new e-learning environment is constituted by three parts, the E-learning platform Front-End, the Student Questioner Reasoning and the Student Model Agent. These parts are distributed geographically in dispersed computer servers, with main focus on the design and development of these subsystems through the use of new and emerging technologies. These parts are interconnected in an interoperable way, using web services for the integration of the subsystems, in order to enhance the user modelling procedure and achieve the goals of the learning process.

An Efficient Architecture for Interleaved Modular Multiplication

Modular multiplication is the basic operation in most public key cryptosystems, such as RSA, DSA, ECC, and DH key exchange. Unfortunately, very large operands (in order of 1024 or 2048 bits) must be used to provide sufficient security strength. The use of such big numbers dramatically slows down the whole cipher system, especially when running on embedded processors. So far, customized hardware accelerators - developed on FPGAs or ASICs - were the best choice for accelerating modular multiplication in embedded environments. On the other hand, many algorithms have been developed to speed up such operations. Examples are the Montgomery modular multiplication and the interleaved modular multiplication algorithms. Combining both customized hardware with an efficient algorithm is expected to provide a much faster cipher system. This paper introduces an enhanced architecture for computing the modular multiplication of two large numbers X and Y modulo a given modulus M. The proposed design is compared with three previous architectures depending on carry save adders and look up tables. Look up tables should be loaded with a set of pre-computed values. Our proposed architecture uses the same carry save addition, but replaces both look up tables and pre-computations with an enhanced version of sign detection techniques. The proposed architecture supports higher frequencies than other architectures. It also has a better overall absolute time for a single operation.

An Agent-Based Scheduling Framework for Flexible Manufacturing Systems

The concept of flexible manufacturing is highly appealing in gaining a competitive edge in the market by quickly adapting to the changing customer needs. Scheduling jobs on flexible manufacturing systems (FMSs) is a challenging task of managing the available flexibility on the shop floor to react to the dynamics of the environment in real-time. In this paper, an agent-oriented scheduling framework that can be integrated with a real or a simulated FMS is proposed. This framework works in stochastic environments with a dynamic model of job arrival. It supports a hierarchical cooperative scheduling that builds on the available flexibility of the shop floor. Testing the framework on a model of a real FMS showed the capability of the proposed approach to overcome the drawbacks of the conventional approaches and maintain a near optimal solution despite the dynamics of the operational environment.

The New Method of Concealed Data Aggregation in Wireless Sensor: A Case Study

Wireless sensor networks (WSN) consists of many sensor nodes that are placed on unattended environments such as military sites in order to collect important information. Implementing a secure protocol that can prevent forwarding forged data and modifying content of aggregated data and has low delay and overhead of communication, computing and storage is very important. This paper presents a new protocol for concealed data aggregation (CDA). In this protocol, the network is divided to virtual cells, nodes within each cell produce a shared key to send and receive of concealed data with each other. Considering to data aggregation in each cell is locally and implementing a secure authentication mechanism, data aggregation delay is very low and producing false data in the network by malicious nodes is not possible. To evaluate the performance of our proposed protocol, we have presented computational models that show the performance and low overhead in our protocol.

Strategic Regional Identity for Health and Wellness Lodging

This research aimed to study the competency of health and wellness hotels and resorts in developing use the local natural resources and wisdom to conform to the national health and wellness tourism (HWT) strategy by comparing two independent samples, from Aumpur Muang, Ranong province and Aumpur Muang, Chiangmai province. And also study in the suggestive direct path to lead the organization to the sustainable successful. This research was conduct by using mix methodology; both quantitative and qualitative data were used. The data of competency of health and wellness hotels and resorts (HWHR) in developing use the local natural resources for HWT promoting were collected via 300 set of questionnaires, from 6 hotels and resorts in 2 areas, 3 places from Aumpur Muang, Ranong province and another 3 from Aumpur Muang, Chiangmai province. Thestudy of HWHR’s competency in developing use the local natural resources and wisdom to conform to the national HWT strategycan be divided into fourmain areas, food and beverages service, tourism activity, environmental service, and value adding. The total competency of the Chiangmai sample is importantly scoredp. value 0.01 higher than the Ranong one while the area of safety, Chiangmai’s competency is importantly scored 0.05 higher than the Ranong’scompetency. Others were rated not differently. Since Chiangmai perform better, then it can be a role model in developing HTHR or HWT destination. From the part of qualitative research, content analysis of business contents and its environments were analyzed. The four stages of strategic development and plans, from the smallest scale to the largest scale such a national base were discussed. The HWT: Evolution model and strategy for lodging Business were suggested. All those stages must work harmoniously together. The distinctive result illustrates the need of human resource development as the key point to create the identity of Thainess on Health and wellness service providing. This will add-on the value of services and differentiates ourselves from other competitors. The creative of Thailand’s health and wellness brand possibly increase loyalty customers which agreed to be a path of sustainable development.

Recognition Machine (RM) for On-line and Isolated Flight Deck Officer (FDO) Gestures

The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.

Enabling Remote Desktop in a Virtualized Environment for Cloud Services

Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. This paper presents our development on enabling an individual user's desktop in a virtualized environment, which is stored on a remote virtual machine rather than locally. We present the initial work on the integration of virtual desktop and application sharing with virtualization technology. Given the development of remote desktop virtualization, this proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. Users no longer need to burden the cost of software licenses and platform maintenances. Moreover, this development also helps boost user productivity by promoting a flexible model that lets users access their desktop environments from virtually anywhere.

Laboratory Experimentation for Supporting Collaborative Working in Engineering Education over the Internet

Collaborative working environments for distance education can be considered as a more generic form of contemporary remote labs. At present, the majority of existing real laboratories are not constructed to allow the involved participants to collaborate in real time. To make this revolutionary learning environment possible we must allow the different users to carry out an experiment simultaneously. In recent times, multi-user environments are successfully applied in many applications such as air traffic control systems, team-oriented military systems, chat-text tools, multi-player games etc. Thus, understanding the ideas and techniques behind these systems could be of great importance in the contribution of ideas to our e-learning environment for collaborative working. In this investigation, collaborative working environments from theoretical and practical perspectives are considered in order to build an effective collaborative real laboratory, which allows two students or more to conduct remote experiments at the same time as a team. In order to achieve this goal, we have implemented distributed system architecture, enabling students to obtain an automated help by either a human tutor or a rule-based e-tutor.

Designing a Framework for Network Security Protection

As the Internet continues to grow at a rapid pace as the primary medium for communications and commerce and as telecommunication networks and systems continue to expand their global reach, digital information has become the most popular and important information resource and our dependence upon the underlying cyber infrastructure has been increasing significantly. Unfortunately, as our dependency has grown, so has the threat to the cyber infrastructure from spammers, attackers and criminal enterprises. In this paper, we propose a new machine learning based network intrusion detection framework for cyber security. The detection process of the framework consists of two stages: model construction and intrusion detection. In the model construction stage, a semi-supervised machine learning algorithm is applied to a collected set of network audit data to generate a profile of normal network behavior and in the intrusion detection stage, input network events are analyzed and compared with the patterns gathered in the profile, and some of them are then flagged as anomalies should these events are sufficiently far from the expected normal behavior. The proposed framework is particularly applicable to the situations where there is only a small amount of labeled network training data available, which is very typical in real world network environments.

Evaluation of Risks in New Product Innovation

In highly competitive environments, a growing number of companies must regularly launch new products speedily and successfully. A company-s success is based on the systematic, conscious product designing method which meets the market requirements and takes risks as well as resources into consideration. Research has found that developing and launching new products are inherently risky endeavors. Hence in this research, we aim at introducing a risk evaluation framework for the new product innovation process. Our framework is based on the fuzzy analytical hierarchy process (FAHP) methodology. We have applied all the stages of the framework on the risk evaluation process of a pharmaceuticals company.

Communicating a Mega Sporting Event in a Social Network Environment

Arguments on a popular microblogging site were analysed by means of a methodological approach to business rhetoric focusing on the logos communication technique. The focus of the analysis was the 100 day countdown to the 2011 Rugby World Cup as advanced by the organisers. Big sporting events provide an attractive medium for sport event marketers in that they have become important strategic communication tools directed at sport consumers. Sport event marketing is understood in the sense of using a microblogging site as a communication tool whose purpose it is to disseminate a company-s marketing messages by involving the target audience in experiential activities. Sport creates a universal language in that it excites and increases the spread of information by word of mouth and other means. The findings highlight the limitations of a microblogging site in terms of marketing messages which can assist in better practices. This study can also serve as a heuristic tool for other researchers analysing sports marketing messages in social network environments.

Using Teager Energy Cepstrum and HMM distancesin Automatic Speech Recognition and Analysis of Unvoiced Speech

In this study, the use of silicon NAM (Non-Audible Murmur) microphone in automatic speech recognition is presented. NAM microphones are special acoustic sensors, which are attached behind the talker-s ear and can capture not only normal (audible) speech, but also very quietly uttered speech (non-audible murmur). As a result, NAM microphones can be applied in automatic speech recognition systems when privacy is desired in human-machine communication. Moreover, NAM microphones show robustness against noise and they might be used in special systems (speech recognition, speech conversion etc.) for sound-impaired people. Using a small amount of training data and adaptation approaches, 93.9% word accuracy was achieved for a 20k Japanese vocabulary dictation task. Non-audible murmur recognition in noisy environments is also investigated. In this study, further analysis of the NAM speech has been made using distance measures between hidden Markov model (HMM) pairs. It has been shown the reduced spectral space of NAM speech using a metric distance, however the location of the different phonemes of NAM are similar to the location of the phonemes of normal speech, and the NAM sounds are well discriminated. Promising results in using nonlinear features are also introduced, especially under noisy conditions.

Investigation of Buoyant Parameters of k-ε Turbulence Model in Gravity Stratified Flows

Different variants for buoyancy-affected terms in k-ε turbulence model have been utilized to predict the flow parameters more accurately, and investigate applicability of alternative k-ε turbulence buoyant closures in numerical simulation of a horizontal gravity current. The additional non-isotropic turbulent stress due to buoyancy has been considered in production term, based on Algebraic Stress Model (ASM). In order to account for turbulent scalar fluxes, general gradient diffusion hypothesis has been used along with Boussinesq gradient diffusion hypothesis with a variable turbulent Schmidt number and additional empirical constant c3ε.To simulate buoyant flow domain a 2D vertical numerical model (WISE, Width Integrated Stratified Environments), based on Reynolds- Averaged Navier-Stokes (RANS) equations, has been deployed and the model has been further developed for different k-ε turbulence closures. Results are compared against measured laboratory values of a saline gravity current to explore the efficient turbulence model.

Spectrum Sensing Based On the Cyclostationarity of PU Signals in High Traffic Environments

In cognitive radio (CR) systems, the primary user (PU) signal would randomly depart or arrive during the sensing period of a CR user, which is referred to as the high traffic environment. In this paper, we propose a novel spectrum sensing scheme based on the cyclostationarity of PU signals in high traffic environments. Specifically, we obtain a test statistic by applying an estimate of spectral autocoherence function of the PU signal to the generalized- likelihood ratio. From numerical results, it is confirmed that the proposed scheme provides a better spectrum sensing performance compared with the conventional spectrum sensing scheme based on the energy of the PU signals in high traffic environments.

Evolutionary Algorithms for Learning Primitive Fuzzy Behaviors and Behavior Coordination in Multi-Objective Optimization Problems

Evolutionary robotics is concerned with the design of intelligent systems with life-like properties by means of simulated evolution. Approaches in evolutionary robotics can be categorized according to the control structures that represent the behavior and the parameters of the controller that undergo adaptation. The basic idea is to automatically synthesize behaviors that enable the robot to perform useful tasks in complex environments. The evolutionary algorithm searches through the space of parameterized controllers that map sensory perceptions to control actions, thus realizing a specific robotic behavior. Further, the evolutionary algorithm maintains and improves a population of candidate behaviors by means of selection, recombination and mutation. A fitness function evaluates the performance of the resulting behavior according to the robot-s task or mission. In this paper, the focus is in the use of genetic algorithms to solve a multi-objective optimization problem representing robot behaviors; in particular, the A-Compander Law is employed in selecting the weight of each objective during the optimization process. Results using an adaptive fitness function show that this approach can efficiently react to complex tasks under variable environments.

Knowledge Management and e-Learning –An Agent-Based Approach

In this paper an open agent-based modular framework for personalized and adaptive curriculum generation in e-learning environment is proposed. Agent-based approaches offer several potential advantages over alternative approaches. Agent-based systems exhibit high levels of flexibility and robustness in dynamic or unpredictable environments by virtue of their intrinsic autonomy. The presented framework enables integration of different types of expert agents, various kinds of learning objects and user modeling techniques. It creates possibilities for adaptive e-learning process. The KM e-learning system is in a process of implementation in Varna Free University and will be used for supporting the educational process at the University.

Influences of Si and C- Doping on the Al-27 and N-14 Quardrupole Coupling Constants in AlN Nanotubes: A DFT Study

A computational study at the level density functional theory (DFT) was carried out to investigate the influences of Si and C-doping on the 14N and 27Al quadrupole coupling constant in the (10, 0) zigzag single ? walled Aluminum-Nitride nanotube (AlNNT). To this aim, a 1.16nm, length of AlNNT consisting of 40 Al atoms and 40 N atoms were selected where the end atoms are capped by hydrogen atom. To follow the purpose, three Si atoms and three C atoms were doped instead of three Al atoms and three N atoms as a central ring in the surface of the Si and C-doped AlNNT. At first both of systems optimized at the level of BLYP method and 6-31G (d) basis set and after that, the NQR parameters were calculated at the level BLYP method and 6-311+G** basis set in two optimized forms. The calculate CQ values for both optimized AlNNT systems, raw and Si and C-doped, reveal different electronic environments in the mentioned systems. It was also demonstrated that the end nuclei have the largest CQ values in both considered AlNNT systems. All the calculations were carried out using Gaussian 98 package of program.