Modelling of Soil Structure Interaction of Integral Abutment Bridges

Integral Abutment Bridges (IAB) are defined as simple or multiple span bridges in which the bridge deck is cast monolithically with the abutment walls. This kind of bridges are becoming very popular due to different aspects such as good response under seismic loading, low initial costs, elimination of bearings, and less maintenance. However the main issue related to the analysis of this type of structures is dealing with soil-structure interaction of the abutment walls and the supporting piles. Various soil constitutive models have been used in studies of soil-structure interaction in this kind of structures by researchers. This paper is an effort to review the implementation of various finite elements model which explicitly incorporates the nonlinear soil and linear structural response considering various soil constitutive models and finite element mesh.

A Balanced Cost Cluster-Heads Selection Algorithm for Wireless Sensor Networks

This paper focuses on reducing the power consumption of wireless sensor networks. Therefore, a communication protocol named LEACH (Low-Energy Adaptive Clustering Hierarchy) is modified. We extend LEACHs stochastic cluster-head selection algorithm by a modifying the probability of each node to become cluster-head based on its required energy to transmit to the sink. We present an efficient energy aware routing algorithm for the wireless sensor networks. Our contribution consists in rotation selection of clusterheads considering the remoteness of the nodes to the sink, and then, the network nodes residual energy. This choice allows a best distribution of the transmission energy in the network. The cluster-heads selection algorithm is completely decentralized. Simulation results show that the energy is significantly reduced compared with the previous clustering based routing algorithm for the sensor networks.

Performance Assessment of Wet-Compression Gas Turbine Cycle with Turbine Blade Cooling

Turbine blade cooling is considered as the most effective way of maintaining high operating temperature making use of the available materials, and turbine systems with wet compression have a potential for future power generation because of high efficiency and high specific power with a relatively low cost. In this paper performance analysis of wet-compression gas turbine cycle with turbine blade cooling is carried out. The wet compression process is analytically modeled based on non-equilibrium droplet evaporation. Special attention is paid for the effects of pressure ratio and water injection ratio on the important system variables such as ratio of coolant fluid flow, fuel consumption, thermal efficiency and specific power. Parametric studies show that wet compression leads to insignificant improvement in thermal efficiency but significant enhancement of specific power in gas turbine systems with turbine blade cooling.

Optimal Prices under Revenue Sharing Contract in a Supply Chain with Direct Channel

Westudy a dual-channel supply chain under decentralized setting in which manufacturer sells to retailer and to customers directly usingan online channel. A customer chooses the purchase-channel based on price and service quality. Also, to buy product from the retail store, the customer incurs a transportation cost influenced by the fluctuating gasoline cost. Both companies are under the revenue sharing contract. In this contract the retailer share a portion of the revenue to the manufacturer while the manufacturer will charge the lower wholesales price. The numerical result shows that the effects of gasoline costs, the revenue sharing ratio and the wholesale price play an important role in determining optimal prices. The result shows that when the gasoline price fluctuatesthe optimal on-line priceis relatively stable while the optimal retail price moves in the opposite direction of the gasoline prices.

A Unique Solution for Designing Low-Cost, Heterogeneous Sensor Networks Using a Middleware Integration Platform

Proprietary sensor network systems are typically expensive, rigid and difficult to incorporate technologies from other vendors. When using competing and incompatible technologies, a non-proprietary system is complex to create because it requires significant technical expertise and effort, which can be more expensive than a proprietary product. This paper presents the Sensor Abstraction Layer (SAL) that provides middleware architectures with a consistent and uniform view of heterogeneous sensor networks, regardless of the technologies involved. SAL abstracts and hides the hardware disparities and specificities related to accessing, controlling, probing and piloting heterogeneous sensors. SAL is a single software library containing a stable hardware-independent interface with consistent access and control functions to remotely manage the network. The end-user has near-real-time access to the collected data via the network, which results in a cost-effective, flexible and simplified system suitable for novice users. SAL has been used for successfully implementing several low-cost sensor network systems.

Through Biometric Card in Romania: Person Identification by Face, Fingerprint and Voice Recognition

In this paper three different approaches for person verification and identification, i.e. by means of fingerprints, face and voice recognition, are studied. Face recognition uses parts-based representation methods and a manifold learning approach. The assessment criterion is recognition accuracy. The techniques under investigation are: a) Local Non-negative Matrix Factorization (LNMF); b) Independent Components Analysis (ICA); c) NMF with sparse constraints (NMFsc); d) Locality Preserving Projections (Laplacianfaces). Fingerprint detection was approached by classical minutiae (small graphical patterns) matching through image segmentation by using a structural approach and a neural network as decision block. As to voice / speaker recognition, melodic cepstral and delta delta mel cepstral analysis were used as main methods, in order to construct a supervised speaker-dependent voice recognition system. The final decision (e.g. “accept-reject" for a verification task) is taken by using a majority voting technique applied to the three biometrics. The preliminary results, obtained for medium databases of fingerprints, faces and voice recordings, indicate the feasibility of our study and an overall recognition precision (about 92%) permitting the utilization of our system for a future complex biometric card.

Architectural, Technological and Performance Issues in Enterprise Applications

Enterprise applications are complex systems that are hard to develop and deploy in organizations. Although software application development tools, frameworks, methodologies and patterns are rapidly developing; many projects fail by causing big costs. There are challenging issues that programmers and designers face with while working on enterprise applications. In this paper, we present the three of the significant issues: Architectural, technological and performance. The important subjects in each issue are pointed out and recommendations are given. In architectural issues the lifecycle, meta-architecture, guidelines are pointed out. .NET and Java EE platforms are presented in technological issues. The importance of performance, measuring performance and profilers are explained in performance issues.

The Benefits of IFRS Adoption – A Survey of Chief Financial Officers of Romanian Listed Companies

The move towards internationalization of accounting encountered a great boost, when in 2002 EU delegated the IASB to provide the accounting standards to be applied inside its frontiers. Among the incentives of the standardization of accounting on the international level, is the reduction of the cost of capital. Romania made the move towards IFRS before EU, when the country was not yet a member of it. Even if this made Romania a special case, it was scarcely approached. The leak of real data is usually the reason for avoiding. The novelty of this paper is that it offers an insight from the reality of Romanian companies and their view regarding the IFRS. The paper is based on a survey that the authors made among the companies listed on the first two tiers of the Bucharest Stock Exchange (BSE), which are basically, the most important companies in the country.

Performance Evaluation of Energy Efficient Communication Protocol for Mobile Ad Hoc Networks

A mobile ad hoc network is a network of mobile nodes without any notion of centralized administration. In such a network, each mobile node behaves not only as a host which runs applications but also as a router to forward packets on behalf of others. Clustering has been applied to routing protocols to achieve efficient communications. A CH network expresses the connected relationship among cluster-heads. This paper discusses the methods for constructing a CH network, and produces the following results: (1) The required running costs of 3 traditional methods for constructing a CH network are not so different from each other in the static circumstance, or in the dynamic circumstance. Their running costs in the static circumstance do not differ from their costs in the dynamic circumstance. Meanwhile, although the routing costs required for the above 3 methods are not so different in the static circumstance, the costs are considerably different from each other in the dynamic circumstance. Their routing costs in the static circumstance are also very different from their costs in the dynamic circumstance, and the former is one tenths of the latter. The routing cost in the dynamic circumstance is mostly the cost for re-routing. (2) On the strength of the above results, we discuss new 2 methods regarding whether they are tolerable or not in the dynamic circumstance, that is, whether the times of re-routing are small or not. These new methods are revised methods that are based on the traditional methods. We recommended the method which produces the smallest routing cost in the dynamic circumstance, therefore producing the smallest total cost.

Machine Scoring Model Using Data Mining Techniques

this article proposed a methodology for computer numerical control (CNC) machine scoring. The case study company is a manufacturer of hard disk drive parts in Thailand. In this company, sample of parts manufactured from CNC machine are usually taken randomly for quality inspection. These inspection data were used to make a decision to shut down the machine if it has tendency to produce parts that are out of specification. Large amount of data are produced in this process and data mining could be very useful technique in analyzing them. In this research, data mining techniques were used to construct a machine scoring model called 'machine priority assessment model (MPAM)'. This model helps to ensure that the machine with higher risk of producing defective parts be inspected before those with lower risk. If the defective prone machine is identified sooner, defective part and rework could be reduced hence improving the overall productivity. The results showed that the proposed method can be successfully implemented and approximately 351,000 baht of opportunity cost could have saved in the case study company.

Design Considerations of PV Water Pumping and Rural Electricity System (2011) in Lower Myanmar

Photovoltaic (PV) systems provides a viable means of power generation for applications like powering residential appliances, electrification of villages in rural areas, refrigeration and water pumping. Photovoltaic-power generation is reliable. The operation and maintenance costs are very low. Since Myanmar is a land of plentiful sunshine, especially in central and southern regions of the country, the solar energy could hopefully become the final solution to its energy supply problem in rural area.

Utilization of Agro-Industrial Waste in Metal Matrix Composites: Towards Sustainability

The application of agro-industrial waste in Aluminum Metal Matrix Composites has been getting more attention as they can reinforce particles in metal matrix which enhance the strength properties of the composites. In addition, by applying these agroindustrial wastes in useful way not only save the manufacturing cost of products but also reduce the pollutions on environment. This paper represents a literature review on a range of industrial wastes and their utilization in metal matrix composites. The paper describes the synthesis methods of agro-industrial waste filled metal matrix composite materials and their mechanical, wear, corrosion, and physical properties. It also highlights the current application and future potential of agro-industrial waste reinforced composites in aerospace, automotive and other construction industries.

Symmetry Breaking and the Emergence of Branching Structures in Morphogenesis: Minimal Conditions and Mechanical Interactions between Cells

The minimal condition for symmetry breaking in morphogenesis of cellular population was investigated using cellular automata based on reaction-diffusion dynamics. In particular, the study looked for the possibility of the emergence of branching structures due to mechanical interactions. The model used two types of cells an external gradient. The results showed that the external gradient influenced movement of cell type-I, also revealed that clusters formed by cells type-II worked as barrier to movement of cells type-I.

Research on Applying the Continuity Care Document to Generate a Medical Record with Entry Level

Transferring patient information between medical care sites is necessary to deliver better patient care and to reduce medical cost. So developing of electronic medical records is an important trend for the world.The Continuity of Care Document (CCD) is product of collaboration between CDA and CCR standards. In this study, we will develop a system to generate medical records with entry level based on CCD template module.

Robust Sensorless Speed Control of Induction Motor with DTFC and Fuzzy Speed Regulator

Recent developments in Soft computing techniques, power electronic switches and low-cost computational hardware have made it possible to design and implement sophisticated control strategies for sensorless speed control of AC motor drives. Such an attempt has been made in this work, for Sensorless Speed Control of Induction Motor (IM) by means of Direct Torque Fuzzy Control (DTFC), PI-type fuzzy speed regulator and MRAS speed estimator strategy, which is absolutely nonlinear in its nature. Direct torque control is known to produce quick and robust response in AC drive system. However, during steady state, torque, flux and current ripple occurs. So, the performance of conventional DTC with PI speed regulator can be improved by implementing fuzzy logic techniques. Certain important issues in design including the space vector modulated (SVM) 3-Ф voltage source inverter, DTFC design, generation of reference torque using PI-type fuzzy speed regulator and sensor less speed estimator have been resolved. The proposed scheme is validated through extensive numerical simulations on MATLAB. The simulated results indicate the sensor less speed control of IM with DTFC and PI-type fuzzy speed regulator provides satisfactory high dynamic and static performance compare to conventional DTC with PI speed regulator.

Incentive Pay System and Economy Condition

This paper aims to initiate an analytical account of the issues of compliance with economy condition for incentive pay system application in an enterprise. Economy is considered one of the conditions for effective incentive pay system application another condition being the achievement of desired efficiency level of the incentive pay system application. Bonus pay system is discussed as an example.

An Off-the-Shelf Scheme for Dependable Grid Systems Using Virtualization

Recently, grid computing has been widely focused on the science, industry, and business fields, which are required a vast amount of computing. Grid computing is to provide the environment that many nodes (i.e., many computers) are connected with each other through a local/global network and it is available for many users. In the environment, to achieve data processing among nodes for any applications, each node executes mutual authentication by using certificates which published from the Certificate Authority (for short, CA). However, if a failure or fault has occurred in the CA, any new certificates cannot be published from the CA. As a result, a new node cannot participate in the gird environment. In this paper, an off-the-shelf scheme for dependable grid systems using virtualization techniques is proposed and its implementation is verified. The proposed approach using the virtualization techniques is to restart an application, e.g., the CA, if it has failed. The system can tolerate a failure or fault if it has occurred in the CA. Since the proposed scheme is implemented at the application level easily, the cost of its implementation by the system builder hardly takes compared it with other methods. Simulation results show that the CA in the system can recover from its failure or fault.

A GA-Based Role Assignment Approach for Web-based Cooperative Learning Environments

Web-based cooperative learning focuses on (1) the interaction and the collaboration of community members, and (2) the sharing and the distribution of knowledge and expertise by network technology to enhance learning performance. Numerous research literatures related to web-based cooperative learning have demonstrated that cooperative scripts have a positive impact to specify, sequence, and assign cooperative learning activities. Besides, literatures have indicated that role-play in web-based cooperative learning environments enhances two or more students to work together toward the completion of a common goal. Since students generally do not know each other and they lack the face-to-face contact that is necessary for the negotiation of assigning group roles in web-based cooperative learning environments, this paper intends to further extend the application of genetic algorithm (GA) and propose a GA-based algorithm to tackle the problem of role assignment in web-based cooperative learning environments, which not only saves communication costs but also reduces conflict between group members in negotiating role assignments.

Emission Constrained Economic Dispatch for Hydrothermal Coordination

This paper presents an efficient emission constrained economic dispatch algorithm that deals with nonlinear cost function and constraints. It is then incorporated into the dynamic programming based hydrothermal coordination program. The program has been tested on a practical utility system having 32 thermal and 12 hydro generating units. Test results show that a slight increase in production cost causes a substantial reduction in emission.

CFD Analysis on Aerodynamic Design Optimization of Wind Turbine Rotor Blades

Wind energy has been shown to be one of the most viable sources of renewable energy. With current technology, the low cost of wind energy is competitive with more conventional sources of energy such as coal. Most blades available for commercial grade wind turbines incorporate a straight span-wise profile and airfoil shaped cross sections. These blades are found to be very efficient at lower wind speeds in comparison to the potential energy that can be extracted. However as the oncoming wind speed increases the efficiency of the blades decreases as they approach a stall point. This paper explores the possibility of increasing the efficiency of the blades at higher wind speeds while maintaining efficiency at the lower wind speeds. The design intends to maintain efficiency at lower wind speeds by selecting the appropriate orientation and size of the airfoil cross sections based on a low oncoming wind speed and given constant rotation rate. The blades will be made more efficient at higher wind speeds by implementing a swept blade profile. Performance was investigated using the computational fluid dynamics (CFD).