River Flow Prediction Using Nonlinear Prediction Method

River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to develop an efficient water management system to optimize the allocation water resources.

Effect of Organic-waste Compost Addition on Leaching of Mineral Nitrogen from Arable Land and Plant Production

Application of compost in agriculture is very desirable worldwide. In the Czech Republic, compost is the most often used to improve soil structure and increase the content of soil organic matter, but the effects of compost addition on the fate of mineral nitrogen are only scarcely described. This paper deals with possibility of using combined application of compost, mineral and organic fertilizers to reduce the leaching of mineral nitrogen from arable land. To demonstrate the effect of compost addition on leaching of mineral nitrogen, we performed the pot experiment. As a model crop, Lactuca sativa L. was used and cultivated for 35 days in climate chamber in thoroughly homogenized arable soil. Ten variants of the experiment were prepared; two control variants (pure arable soil and arable soil with added compost), four variants with different doses of mineral and organic fertilizers and four variants of the same doses of mineral and organic fertilizers with the addition of compos. The highest decrease of mineral nitrogen leaching was observed by the simultaneous applications of soluble humic substances and compost to soil samples, about 417% in comparison with the control variant. Application of these organic compounds also supported microbial activity and nitrogen immobilization documented by the highest soil respiration and by the highest value of the index of nitrogen availability. The production of plant biomass after this application was not the highest due to microbial competition for the nutrients in soil, but was 24% higher in comparison with the control variant. To support these promising results the experiment should be repeated in field conditions.

Sensorless Backstepping Control Using an Adaptive Luenberger Observer with Three Levels NPC Inverter

In this paper, we propose a sensorless backstepping control of induction motor (IM) associated with three levels neutral clamped (NPC) inverter. First, the backstepping approach is designed to steer the flux and speed variables to theirs references and to compensate the uncertainties. A Lyapunov theory is used and it demonstrates that the dynamic trajectories tracking are asymptotically stable. Second, we estimate the rotor flux and speed by using the adaptive Luenberger observer (ALO). Simulation results are provided to illustrate the performance of the proposed approach in high and low speeds and load torque disturbance.

Cold Analysis for Dispersion, Attenuation and RF Efficiency Characteristics of a Gyrotron Cavity

In the present paper, a gyrotron cavity is analyzed in the absence of electron beam for dispersion, attenuation and RF efficiency. For all these characteristics, azimuthally symmetric TE0n modes have been considered. The attenuation characteristics for TE0n modes indicated decrease in attenuation constant as the frequency is increased. Interestingly, the lowest order TE01 mode resulted in lowest attenuation. Further, three different cavity wall materials have been selected for attenuation characteristics. The cavity made of material with higher conductivity resulted in lower attenuation. The effect of material electrical conductivity on the RF efficiency has also been observed and has been found that the RF efficiency rapidly decreases as the electrical conductivity of the cavity material decreases. The RF efficiency rapidly decreases with increasing diffractive quality factor. The ohmic loss variation as a function of frequency of operation for three different cavities made of copper, aluminum and nickel has been observed. The ohmic losses are lowest for the copper cavity and hence the highest RF efficiency.

A Novel Low-Profile Coupled-Fed Printed Twelve-Band Mobile Phone Antenna with Slotted Ground Plane for LTE/GSM/UMTS/WIMAX/WLAN Operations

A low profile planar antenna for twelve-band operation in the mobile phone is presented. The proposed antenna radiating elements occupy an area equals 17 × 50 mm2 are mounted on the compact no-ground portion of the system circuit board to achieve a simple low profile structure. In order to overcome the shortcoming of narrow bandwidth for conventional planar printed antenna, a novel bandwidth enhancement approach for multiband handset antennas is proposed here. The technique used in this study shows that by using a coupled-fed mechanism and a slotted ground structure, a multiband operation with wideband characteristic can be achieved. The influences of the modifications introduced into the ground plane improved significantly the bandwidths of the designed antenna. The slotted ground plane structure with the coupled-fed elements contributes their lowest, middle and higher-order resonant modes to form four operating modes. The generated modes are able to cover LTE 700/2300/2500, GSM 850/900/1800/1900, UMTS, WiMAX 3500, WLAN 2400/5200/5800 operations. Parametric studies via simulation are provided and discussed. Proposed antenna’s gain, efficiency and radiation pattern characteristics over the desired operating bands are obtained and discussed. The reasonable results observed can meet the requirements of practical mobile phones.

Evaluation of Droplet Sizes from Video Images for Metal Working Fluids

Metal working fluids were used in the preparation of oil in water emulsions. The size of oil droplets were evaluated by using the analysis of video images taken from the zeta potential measurements. The evaluated size distributions for emulsions were also tested by microscopic analysis. In addition, emulsion stabilities were discussed depending on electrolyte concentration and pH. The results showed that the stability of oil emulsions was strongly related to pH and the concentration of CaCl2. However, the same dependency was not observed for NaCl.

Examination of the Effect of Air Viscosity on Narrow Acoustic Tubes Using FEM Involving Complex Effective Density and Complex Bulk Modulus

Earphones and headphones, which are compact electro-acoustic transducers, tend to have a lot of acoustic absorption materials and porous materials known as dampers, which often have a large number of extremely small holes and narrow slits to inhibit the resonance of the vibrating system, because the air viscosity significantly affects the acoustic characteristics in such acoustic paths. In order to perform simulations using the finite element method (FEM), it is necessary to be aware of material characteristics such as the impedance and propagation constants of sound absorbing materials and porous materials. The transfer function is widely known as a measurement method for an acoustic tube with such physical properties, but literature describing the measurements at the upper limits of the audible range is yet to be found. The acoustic tube, which is a measurement instrument, must be made narrow, and the distance between the two sets of microphones must be shortened in order to take measurements of acoustic characteristics at higher frequencies. When such a tube is made narrow, however, the characteristic impedance has been observed to become lower than the impedance of air. This paper considers the cause of this phenomenon to be the effect of the air viscosity and describes an FEM analysis of an acoustic tube considering air viscosity to compare to the theoretical formula by including the effect of air viscosity in the theoretical formula for an acoustic tube.

Nylon Solution as Soil Stabilizer

The research investigated the use of nylon solution to enhance the California bearing ratio (CBR) of soil. Used nylon sachet of potable water were dissolved in four separate solvents namely acetone, toluene, ethyl glycol and dual purpose kerosene (DPK). It was discovered that DPK has the highest nylon solubility of 29g/ml at 91oC. The nylon solution was used to stabilize poorly graded sandy soil. The result showed that at less or equal to 4% stabilization, the CBR value decreased from 25.3% to 15.85% and later appreciated to 67.78% at 16% stabilization. The initial decrease in CBR value of soil sample observed was as a result of inadequate nylon solution to coat soil particles for proper bonding.

Applications of Building Information Modeling (BIM) in Knowledge Sharing and Management in Construction

Construction knowledge can be referred to and reused among involved project managers and jobsite engineers to alleviate problems on a construction jobsite and reduce the time and cost of solving problems related to constructability. This paper proposes a new methodology to provide sharing of construction knowledge by using the Building Information Modeling (BIM) approach. The main characteristics of BIM include illustrating 3D CAD-based presentations and keeping information in a digital format, and facilitation of easy updating and transfer of information in the 3D BIM environment. Using the BIM approach, project managers and engineers can gain knowledge related to 3D BIM and obtain feedback provided by jobsite engineers for future reference. This study addresses the application of knowledge sharing management in the construction phase of construction projects and proposes a BIM-based Knowledge Sharing Management (BIMKSM) system for project managers and engineers. The BIMKSM system is then applied in a selected case study of a construction project in Taiwan to verify the proposed methodology and demonstrate the effectiveness of sharing knowledge in the BIM environment. The combined results demonstrate that the BIMKSM system can be used as a visual BIM-based knowledge sharing management platform by utilizing the BIM approach and web technology.

Thermal Properties of Lime-Pozzolan Plasters for Application in Hollow Bricks Systems

The effect of waste ceramic powder on the thermal properties of lime-pozzolana composites is investigated. At first, the measurements of effective thermal conductivity of lime-pozzolan composites are performed in dependence on moisture content from the dry state to fully water saturated state using a pulse method. Then, the obtained data are analyzed using two different homogenization techniques, namely the Lichtenecker’s and Dobson’s formulas, taking into account Wiener’s and Hashin/Shtrikman bounds. 

Prototype of Business Directory for Micro, Small and Medium Enterprises Using Google Maps API and Multimedia

This paper explain about prototype of a business directory for micro-scale businesses, small and medium enterprises (SMEs), the third phase of the research. The third phase is the phase of software development based on the model of SME business directory that had been developed, to create prototype software SME business directory. In the fourth phase, namely the implementation, these units have been developed are tested to obtain input from potential users. The fifth phase is the testing phase to determine the strengths and weaknesses of software has been developed. The result of this phase is the software in the form of on-line (web based) and multimedia-based. Business Directory, if implemented will facilitate and optimize the access of SMEs to ease supplier access to marketing. Business Directory will be equipped with the power of geocoding, so each location can be easily viewed SMEs on the map. The map will be constructed by using the functionality of a web-based Google Maps API. The information presented in the form of multimedia that can be more interesting and interactive. Methodology used to achieve the goal: observation, interviews, modeling and classifying business directory for SMEs. 

Biomechanics Analysis When Delivering Baby

Plenty of analyses based on Biomechanics were carried out on many jobs in manufactures or services. Now Biomechanics analysis is being applied on mothers who are giving birth. The analysis conducted in terms of normal condition of the birth process without Gyn Bed (Obstetric Bed). The aim of analysis is to study whether it is risky or not when choosing the position of mother’s postures when delivering the baby. This investigation was applied on two positions that generally appear in common birth process. Results will show the analysis of both positions to support the birth process based on the Biomechanics analysis (Ergonomic approaches). 

Video-Based Face Recognition Based On State-Space Model

This paper proposes a video-based framework for face recognition to identify which faces appear in a video sequence. Our basic idea is like a tracking task - to track a selection of person candidates over time according to the observing visual features of face images in video frames. Hence, we employ the state-space model to formulate video-based face recognition by dividing this problem into two parts: the likelihood and the transition measures. The likelihood measure is to recognize whose face is currently being observed in video frames, for which two-dimensional linear discriminant analysis is employed. The transition measure estimates the probability of changing from an incorrect recognition at the previous stage to the correct person at the current stage. Moreover, extra nodes associated with head nodes are incorporated into our proposed state-space model. The experimental results are also provided to demonstrate the robustness and efficiency of our proposed approach.

Study on Electrohydrodynamic Capillary Instability with Heat and Mass Transfer

The effect of an axial electric field on the capillary instability of a cylindrical interface in the presence of heat and mass transfer has been investigated using viscous potential flow theory. In viscous potential flow, the viscous term in Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses are not considered. A dispersion relation that accounts for the growth of axisymmetric waves is derived and stability is discussed theoretically as well as numerically. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs have been drawn to show the effect of various physical parameters such as electric field, heat transfer capillary number, conductivity ratio, permittivity ratio on the stability of the system. It has been observed that the axial electric field and heat and mass transfer both have stabilizing effect on the stability of the system.

Backcalculation of HMA Stiffness Based On Finite Element Model

Stiffness of Hot Mix Asphalt (HMA) in flexible pavement is largely dependent of temperature, mode of testing and age of pavement. Accurate measurement of HMA stiffness is thus quite challenging. This study determines HMA stiffness based on Finite Element Model (FEM) and validates the results using field data. As a first step, stiffnesses of different layers of a pavement section on Interstate 40 (I-40) in New Mexico were determined by Falling Weight Deflectometer (FWD) test. Pavement temperature was not measured at that time due to lack of temperature probe. Secondly, a FE model is developed in ABAQUS. Stiffness of the base, subbase and subgrade were taken from the FWD test output obtained from the first step. As HMA stiffness largely varies with temperature it was assigned trial and error approach. Thirdly, horizontal strain and vertical stress at the bottom of the HMA and temperature at different depths of the pavement were measured with installed sensors on the whole day on December 25th, 2012. Fourthly, outputs of FEM were correlated with measured stress-strain responses. After a number of trials a relationship was developed between the trial stiffness of HMA and measured mid-depth HMA temperature. At last, the obtained relationship between stiffness and temperature is verified by further FWD test when pavement temperature was recorded. A promising agreement between them is observed. Therefore, conclusion can be drawn that linear elastic FEM can accurately predict the stiffness and the structural response of flexible pavement.

Role of Process Parameters on Pocket Milling with Abrasive Water Jet Machining Technique

Abrasive Water Jet Machining is an unconventional machining process well known for machining hard to cut materials. The primary research focus on the process was for through cutting and a very limited literature is available on pocket milling using AWJM. The present work is an attempt to use this process for milling applications considering a set of various process parameters. Four different input parameters, which were considered by researchers for part separation, are selected for the above application, i.e., abrasive size, flow rate, standoff distance and traverse speed. Pockets of definite size are machined to investigate surface roughness, material removal rate and pocket depth. Based on the data available through experiments on SS304 material, it is observed that higher traverse speeds gives a better finish because of reduction in the particle energy density and lower depth is also observed. Increase in the standoff distance and abrasive flow rate reduces the rate of material removal as the jet loses its focus and occurrence of collisions within the particles. ANOVA for individual output parameter has been studied to know the significant process parameters.

Dimensional Variations of Cement Matrices in the Presence of Metal Fibers

The objective of this study is to present and to analyze the feasibility of using steel fibers as reinforcement in the cementations matrix to minimize the effect of free shrinkage which is a major cause of cracks that have can observe on concrete structures, also to improve the mechanical resistances of this concrete reinforced. The experimental study was performed on specimens with geometric characteristics adapted to the testing. The tests of shrinkage apply on prismatic specimens, equipped with rods fixed to the ends with different dosages of fibers, it should be noted that the fibers used are hooked end of 50mm length and 67 slenderness. The results show that the compressive strength and flexural strength increases as the degree of incorporation of fibbers increases. And the shrinkage deformations are generally less important for fibers-reinforced concrete to those appearing in the concrete without fibers.

Strength and Permeability Characteristics of Steel Fibre Reinforced Concrete

The results reported in this paper are the part of an extensive laboratory investigation undertaken to study the effects of fibre parameters on the permeability and strength characteristics of steel fibre reinforced concrete (SFRC). The effect of varying fibre content and curing age on the water permeability, compressive and split tensile strengths of SFRC was investigated using straight steel fibres having an aspect ratio of 65. Samples containing three different weight fractions of 1.0%, 2.0% and 4.0% were cast and tested for permeability and strength after 7, 14, 28 and 60 days of curing. Plain concrete samples were also cast and tested for reference purposes. Permeability was observed to decrease significantly with the addition of steel fibres and continued to decrease with increasing fibre content and increasing curing age. An exponential relationship was observed between permeability and compressive and split tensile strengths for SFRC as well as PCC. To evaluate the effect of fibre content on the permeability and strength characteristics, the Analysis of Variance (ANOVA) statistical method was used. An a level (probability of error) of 0.05 was used for ANOVA test. Regression analysis was carried out to develop relationship between permeability, compressive strength and curing age.

Effect of Alkali Treatment on Impact Behavior of Areca Fibers Reinforced Polymer Composites

Natural fibers are considered to have potential use as reinforcing agents in polymer composite materials because of their principal benefits: moderate strength and stiffness, low cost, and being an environmental friendly, degradable, and renewable material. A study has been carried out to evaluate impact properties of composites made by areca fibers reinforced urea formaldehyde, melamine urea formaldehyde and epoxy resins. The extracted areca fibers from the areca husk were alkali treated with potassium hydroxide (KOH) to obtain better interfacial bonding between fiber and matrix. Then composites were produced by means of compression molding technique with varying process parameters, such as fiber condition (untreated and alkali treated), and fiber loading percentages (50% and 60% by weight). The developed areca fiber reinforced composites were then characterized by impact test. The results show that, impact strength increase with increase in the loading percentage. It is observed that, treated areca fiber reinforcement increases impact strength when compared to untreated areca fiber reinforcement.

Effect of Zr Addition on Mechanical Properties of Cr-Mo Plastic Mold Steels

We investigated the effects of the additions of Zr and other alloying elements on the mechanical properties and microstructure in Cr-Mo plastic mold steels. The addition of alloying elements changed the microstructure of the normalized samples from the upper bainite to lower bainite due to the increased hardenability. The tempering temperature influenced the strength and hardness values, especially the phenomenon of 350oC embrittlement was observed. The alloy additions of Cr, Mo, and V improved the resistance to the temper embrittlement. The addition of Zr improved the tensile strength and yield strength, but the impact energy was sharply decreased. It may be caused by the formation of Zr-MnS inclusion and rectangular-shaped Zr inclusion due to the Zr addition.