Application of Genetic Algorithm for FACTS-based Controller Design

In this paper, genetic algorithm (GA) opmization technique is applied to design Flexible AC Transmission System (FACTS)-based damping controllers. Two types of controller structures, namely a proportional-integral (PI) and a lead-lag (LL) are considered. The design problem of the proposed controllers is formulated as an optimization problem and GA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The proposed controllers are tested on a weakly connected power system subjected to different disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC-based controllers improve greatly the voltage profile of the system under severe disturbances. Further, the dynamic performances of both the PI and LL structured FACTS-controller are analyzed at different loading conditions and under various disturbance condition as well as under unbalanced fault conditions..

Effect of TCSR on Measured Impedance by Distance Protection in Presence Single Phase to Earth Fault

This paper presents the impact study of apparent reactance injected by series Flexible AC Transmission System (FACTS) i.e. Thyristor Controlled Series Reactor (TCSR) on the measured impedance of a 400 kV single electrical transmission line in the presence of phase to earth fault with fault resistance. The study deals with an electrical transmission line of Eastern Algerian transmission networks at Group Sonelgaz (Algerian Company of Electrical and Gas) compensated by TCSR connected at midpoint of the line. This compensator used to inject active and reactive powers is controlled by three TCSR-s. The simulations results investigate the impacts of the TCSR on the parameters of short circuit calculation and parameters of measured impedance by distance relay in the presence of earth fault for three cases study.

Virtual Gesture Screen System Based on 3D Visual Information and Multi-Layer Perceptron

Active research is underway on virtual touch screens that complement the physical limitations of conventional touch screens. This paper discusses a virtual touch screen that uses a multi-layer perceptron to recognize and control three-dimensional (3D) depth information from a time of flight (TOF) camera. This system extracts an object-s area from the image input and compares it with the trajectory of the object, which is learned in advance, to recognize gestures. The system enables the maneuvering of content in virtual space by utilizing human actions.

Hybrid Recommender Systems using Social Network Analysis

This study proposes novel hybrid social network analysis and collaborative filtering approach to enhance the performance of recommender systems. The proposed model selects subgroups of users in Internet community through social network analysis (SNA), and then performs clustering analysis using the information about subgroups. Finally, it makes recommendations using cluster-indexing CF based on the clustering results. This study tries to use the cores in subgroups as an initial seed for a conventional clustering algorithm. This model chooses five cores which have the highest value of degree centrality from SNA, and then performs clustering analysis by using the cores as initial centroids (cluster centers). Then, the model amplifies the impact of friends in social network in the process of cluster-indexing CF.

Springback Investigation on Sheet Metal Incremental Formed Parts

Incremental forming is a complex forming process with continuously local cumulative deformation taking place during its process, and springback that forming quality affected by would occur. The springback evaluation method based on forming error compensation also was proposed, which it can be defined as the difference between theory and the actual amount of compensation along the measured direction. According to forming error compensation evaluation method, experiments was designed and implemented. And from the results that obtained it can be show, the magnitude of springback average (δE) of formed parts was very small, and the forming precision could be significantly improved by adopting compensation method. Based on double tensile stress state in the main deformation area, a hypothesis that there is little springback be arisen by bending behavior on the formed parts that was proposed.

Operating Room Capacity Planning Decisions

Operating rooms are important assets for hospitals as they generate the largest revenue and, at the same time, produce the largest cost for hospitals. The model presented in this paper helps make capacity planning decisions on the combination of open operating rooms (ORs) and estimated overtime to satisfy the allocated OR time to each specialty. The model combines both decisions on determining the amount of OR time to open and to allocate to different surgical specialties. The decisions made are based on OR costs, overutilization and underutilization costs, and contribution margins from allocating OR time. The results show the importance of having a good estimate of specialty usage of OR time to determine the amount of needed capacity and highlighted the tradeoff that the OR manager faces between opening more ORs versus extending the working time of the ORs already in use.

Development and Initial Validation of the Social Competency Inventory for Tertiary Level Faculty Members

This study aimed to develop and initially validate an instrument that measures social competency among tertiary level faculty members. A review of extant literature on social competence was done. The review of extant literature led to the writing of the items in the initial instrument which was evaluated by 11 Subject Matter Experts (SMEs). The SMEs were either educators or psychologists. The results of the evaluations done by the SMEs served as bases for the creation of the pre-try-out instrument used in the first trial-run. Insights from the first trial-run participants led to the development of the main try-out instrument used in the final test administration. One Hundred Forty-one participants from five private Higher Education Institutions (HEIs) in the National Capital Region (NCR) and five private HEIs in Central Luzon in the Philippines participated in the final test administration. The reliability of the instrument was evaluated using Cronbach-s Coefficient Alpha formula and had a Cronbach-s Alpha of 0.92. On the other hand, Factor Analysis was used to evaluate the validity of the instrument and six factors were identified. The development of the final instrument was based on the results of the evaluation of the instrument-s reliability and validity. For purposes of recognition, the instrument was named “Social Competency Inventory for Tertiary Level Faculty Members (SCI-TLFM)."

2D Validation of a High-order Adaptive Cartesian-grid finite-volume Characteristic- flux Model with Embedded Boundaries

A Finite Volume method based on Characteristic Fluxes for compressible fluids is developed. An explicit cell-centered resolution is adopted, where second and third order accuracy is provided by using two different MUSCL schemes with Minmod, Sweby or Superbee limiters for the hyperbolic part. Few different times integrator is used and be describe in this paper. Resolution is performed on a generic unstructured Cartesian grid, where solid boundaries are handled by a Cut-Cell method. Interfaces are explicitely advected in a non-diffusive way, ensuring local mass conservation. An improved cell cutting has been developed to handle boundaries of arbitrary geometrical complexity. Instead of using a polygon clipping algorithm, we use the Voxel traversal algorithm coupled with a local floodfill scanline to intersect 2D or 3D boundary surface meshes with the fixed Cartesian grid. Small cells stability problem near the boundaries is solved using a fully conservative merging method. Inflow and outflow conditions are also implemented in the model. The solver is validated on 2D academic test cases, such as the flow past a cylinder. The latter test cases are performed both in the frame of the body and in a fixed frame where the body is moving across the mesh. Adaptive Cartesian grid is provided by Paramesh without complex geometries for the moment.

Phase Equilibrium of Volatile Organic Compounds in Polymeric Solvents Using Group Contribution Methods

Group contribution methods such as the UNIFAC are of major interest to researchers and engineers involved synthesis, feasibility studies, design and optimization of separation processes as well as other applications of industrial use. Reliable knowledge of the phase equilibrium behavior is crucial for the prediction of the fate of the chemical in the environment and other applications. The objective of this study was to predict the solubility of selected volatile organic compounds (VOCs) in glycol polymers and biodiesel. Measurements can be expensive and time consuming, hence the need for thermodynamic models. The results obtained in this study for the infinite dilution activity coefficients compare very well those published in literature obtained through measurements. It is suggested that in preliminary design or feasibility studies of absorption systems for the abatement of volatile organic compounds, prediction procedures should be implemented while accurate fluid phase equilibrium data should be obtained from experiment.

Innovativeness, Risk Taking, Focusing on Opportunity Attitudes on Nurse Managers and Nurses

The aim of this study is to compare the innovativeness, risk taking, and focusing on opportunity of the nurse managers and nurses. The data are collected from nurse managers and nurses in Ondokuz Mayıs University, Faculty of Medicine Hospital and Karadeniz Technical University, Faculty of Medicine Hospital. The study sample consisted of 151 participants, 76 nurse managers (50.3%) and 75 nurses (49.7%). All participants have been assessed by Participant Information Form and Corporate Entrepreneurship Scale. In data analysis, independent t-test has applied. The results show that there are significant differences between nurse managers and nurses on innovativeness (t = 2.42, p < 0.05), risk taking (t = 3.62, p < 0.01), and focusing on opportunity (t = 2.16, p < 0.05). Consequently, it can be said that nurse managers have more innovativeness than nurses and tend to take more risks and focus more on opportunities. 

Future Housing Energy Efficiency Associated with the Auckland Unitary Plan

The draft Auckland Unitary Plan outlines the future land used for new housing and businesses with Auckland population growth over the next thirty years. According to Auckland Unitary Plan, over the next 30 years, the population of Auckland is projected to increase by one million, and up to 70% of total new dwellings occur within the existing urban area. Intensification will not only increase the number of median or higher density houses such as terrace house, apartment building, etc. within the existing urban area but also change mean housing design data that can impact building thermal performance under the local climate. Based on mean energy consumption and building design data, and their relationships of a number of Auckland sample houses, this study is to estimate the future mean housing energy consumption associated with the change of mean housing design data and evaluate housing energy efficiency with the Auckland Unitary Plan.

Coherence Analysis between Respiration and PPG Signal by Bivariate AR Model

PPG is a potential tool in clinical applications. Among such, the relationship between respiration and PPG signal has attracted attention in past decades. In this research, a bivariate AR spectral estimation method was utilized for the coherence analysis between these two signals. Ten healthy subjects participated in this research with signals measured at different respiratory rates. The results demonstrate that high coherence exists between respiration and PPG signal, whereas the coherence disappears in breath-holding experiments. These results imply that PPG signal reveals the respiratory information. The utilized method may provide an attractive alternative approach for the related researches.

External Morphological Study of Wild Labeo calbasu with Reference to Body Weight' Total Length and Condition Factor from the River Chenab, Punjab, Pakistan

115 samples of Labeo calbasu ranged 8.0-17.9cm length with mean11.90±1.96 and 4.9-68.5g weight with mean 22.25±12.54 from the River Chenab, Southern Punjab, Pakistan were analyzed to investigate length-weight relationships (LWR) of fish in relation to condition factor (K). Standard length (SL), fork length (FL), head length (HL) head width (HW), body girth (BG), dorsal fin length (DFL), dorsal fin base (DFB), pectoral fin length (PcFL), pelvic fin length (PvFL) and anal fin length (AFL) are found to be highly correlated with increasing total length and wet body weight (r > 0.500). Wet body weight has positive (r=0.540) and total length has no correlation (r=0.344) with calculated Condition factor (K). The slope “b" in the relationship is 3.27 and intercepts -2.2258.

Biaxial Testing of Fabrics - A Comparison of Various Testing Methodologies

In textile industry, besides the conventional textile products, technical textile goods, that have been brought external functional properties into, are being developed for technical textile industry. Especially these products produced with weaving technology are widely preferred in areas such as sports, geology, medical, automotive, construction and marine sectors. These textile products are exposed to various stresses and large deformations under typical conditions of use. At this point, sufficient and reliable data could not be obtained with uniaxial tensile tests for determination of the mechanical properties of such products due to mainly biaxial stress state. Therefore, the most preferred method is a biaxial tensile test method and analysis. These tests and analysis is applied to fabrics with different functional features in order to establish the textile material with several characteristics and mechanical properties of the product. Planar biaxial tensile test, cylindrical inflation and bulge tests are generally required to apply for textile products that are used in automotive, sailing and sports areas and construction industry to minimize accidents as long as their service life. Airbags, seat belts and car tires in the automotive sector are also subject to the same biaxial stress states, and can be characterized by same types of experiments. In this study, in accordance with the research literature related to the various biaxial test methods are compared. Results with discussions are elaborated mainly focusing on the design of a biaxial test apparatus to obtain applicable experimental data for developing a finite element model. Sample experimental results on a prototype system are expressed.

The Relationship between Internal Corporate Social Responsibility and Organizational Commitment within the Banking Sector in Jordan

This study attempts to investigate the relationship between internal CSR practices and organizational commitment based on the social exchange theory (SET). Specifically, we examine the impact of five dimensions of internal CSR practices on organizational commitment: health and safety, human rights, training and education, work life balance and workplace diversity. The proposed model was tested on a sample of 336 frontline employees within the banking sector in Jordan. Results showed that all internal CSR dimensions are significantly and positively related to affective and normative commitment. In addition, the findings of this study indicate that all internal CSR dimensions did not have a significant relationship with continuance commitment. Limitations of the study, directions for future research, and implications of the findings are discussed.

A Basic Study on Ubiquitous Overloaded Vehicles Regulation System

Load managing method on road became necessary since overloaded vehicles occur damage on road facilities and existing systems for preventing this damage still show many problems.Accordingly, efficient managing system for preventing overloaded vehicles could be organized by using the road itself as a scale by applying genetic algorithm to analyze the load and the drive information of vehicles.Therefore, this paper organized Ubiquitous sensor network system for development of intelligent overload vehicle regulation system, also in this study, to use the behavior of road, the transformation was measured by installing underground box type indoor model and indoor experiment was held using genetic algorithm. And we examined wireless possibility of overloaded vehicle regulation system through experiment of the transmission and reception distance.If this system will apply to road and bridge, might be effective for economy and convenience through establishment of U-IT system..

The Portuguese Press Portrait of “Environmental Refugees“

The migration-environment nexus has gained increased interest from the social research field over the last years. While straightly connected to human security issues, this theme has pervaded through the media to the public sphere. Therefore, it is important to observe how did the discussions over environmentally induced migrations develop from the scientific basis to the media attention, passing through some political voices, and in which ways might these messages be interpreted within the broader public discourses. To achieve this purpose, the analysis of the press entries between 2004 and 2010 in three of the main Portuguese newspapers shall be presented, specially reflecting upon the events, protagonists, topics, geographical attributions and terms/expressions used to define those who migrate due to environmental degradation or disasters.

Bamboo -An Alternative Building Material for Modest Houses, to Increase the Stock of Affordable Housing, for the Urban Poor Living Close to Bamboo Producing Regions in India

A large section of the society in Urban India is unable to afford a basic dwelling unit. Housing shortage due to the rising unafforability makes it logical to consider alternative technologies more seriously for their application How far do these alternative technologies match up with the conventional techniques? How do these integrate with the present-day need for urban amenities and facilities? Are the owners of bamboo dwellings, for instance, a part of the mainstream housing sector, having the same rights and privileges as those enjoyed by other property owners? Will they have access to loans for building, improving, renovating or repairing their dwellings? Why do we still hesitate to build a bamboo house for ourselves? Is our policy framework and political resolve in place, to welcome such alternative technologies? It is time we found these answers, in order to explore the reasons for large-scale nonacceptance, of a technology proven for its worthiness.

Wave-Structure Interaction for Submerged Quarter-Circle Breakwaters of Different Radii - Reflection Characteristics

The paper presents the results of a series of experiments conducted on physical models of Quarter-circle breakwater (QBW) in a two dimensional monochromatic wave flume. The purpose of the experiments was to evaluate the reflection coefficient Kr of QBW models of different radii (R) for different submergence ratios (d/hc), where d is the depth of water and hc is the height of the breakwater crest from the sea bed. The radii of the breakwater models studied were 20cm, 22.5cm, 25cm, 27.5cm and submergence ratios used varied from 1.067 to 1.667. The wave climate off the Mangalore coast was used for arriving at the various model wave parameters. The incident wave heights (Hi) used in the flume varied from 3 to 18cm, and wave periods (T) ranged from 1.2 s to 2.2 s. The water depths (d) of 40cm, 45cm and 50cm were used in the experiments. The data collected was analyzed to compute variation of reflection coefficient Kr=Hr/Hi (where Hr=reflected wave height) with the wave steepness Hi/gT2 for various R/Hi (R=breakwater radius) values. It was found that the reflection coefficient increased as incident wave steepness increased. Also as wave height decreases reflection coefficient decreases and as structure radius R increased Kr decreased slightly.

Investigating the Effect of Uncertainty on a LP Model of a Petrochemical Complex: Stability Analysis Approach

This study discusses the effect of uncertainty on production levels of a petrochemical complex. Uncertainly or variations in some model parameters, such as prices, supply and demand of materials, can affect the optimality or the efficiency of any chemical process. For any petrochemical complex with many plants, there are many sources of uncertainty and frequent variations which require more attention. Many optimization approaches are proposed in the literature to incorporate uncertainty within the model in order to obtain a robust solution. In this work, a stability analysis approach is applied to a deterministic LP model of a petrochemical complex consists of ten plants to investigate the effect of such variations on the obtained optimal production levels. The proposed approach can determinate the allowable variation ranges of some parameters, mainly objective or RHS coefficients, before the system lose its optimality. Parameters with relatively narrow range of variations, i.e. stability limits, are classified as sensitive parameters or constraints that need accurate estimate or intensive monitoring. These stability limits offer easy-to-use information to the decision maker and help in understanding the interaction between some model parameters and deciding when the system need to be re-optimize. The study shows that maximum production of ethylene and the prices of intermediate products are the most sensitive factors that affect the stability of the optimum solution