Recent Trends in Nonlinear Methods of HRV Analysis: A Review

The linear methods of heart rate variability analysis such as non-parametric (e.g. fast Fourier transform analysis) and parametric methods (e.g. autoregressive modeling) has become an established non-invasive tool for marking the cardiac health, but their sensitivity and specificity were found to be lower than expected with positive predictive value

Analyzing Disclosure Practice of Religious Nonprofit Organizations using Partial Disclosure Index

This study examines the relevance of disclosure practices in improving the accountability and transparency of religious nonprofit organizations (RNPOs). The assessment of disclosure is based on the annual returns of RNPOs for the financial year 2010. In order to quantify the information disclosed in the annual returns, partial disclosure indexes of basic information (BI) disclosure index, financial information (FI) disclosure index and governance information (GI) disclosure index have been built which takes into account the content of information items in the annual returns. The empirical evidence obtained revealed low disclosure practices among RNPOs in the sample. The multiple regression results showed that the organizational attribute of the board size appeared to be the most significant predictor for both partial index on the extent of BI disclosure index, and FI disclosure index. On the other hand, the extent of financial information disclosure is related to the amount of donation received by RNPOs. On GI disclosure index, the existence of an external audit appeared to be significant variable. This study has contributed to the academic literature in providing empirical evidence of the disclosure practices among RNPOs.

Sensitivity Analysis for Determining Priority of Factors Controlling SOC Content in Semiarid Condition of West of Iran

Soil organic carbon (SOC) plays a key role in soil fertility, hydrology, contaminants control and acts as a sink or source of terrestrial carbon content that can affect the concentration of atmospheric CO2. SOC supports the sustainability and quality of ecosystems, especially in semi-arid region. This study was conducted to determine relative importance of 13 different exploratory climatic, soil and geometric factors on the SOC contents in one of the semiarid watershed zones in Iran. Two methods canonical discriminate analysis (CDA) and feed-forward back propagation neural networks were used to predict SOC. Stepwise regression and sensitivity analysis were performed to identify relative importance of exploratory variables. Results from sensitivity analysis showed that 7-2-1 neural networks and 5 inputs in CDA models output have highest predictive ability that explains %70 and %65 of SOC variability. Since neural network models outperformed CDA model, it should be preferred for estimating SOC.

Introducing Sequence-Order Constraint into Prediction of Protein Binding Sites with Automatically Extracted Templates

Search for a tertiary substructure that geometrically matches the 3D pattern of the binding site of a well-studied protein provides a solution to predict protein functions. In our previous work, a web server has been built to predict protein-ligand binding sites based on automatically extracted templates. However, a drawback of such templates is that the web server was prone to resulting in many false positive matches. In this study, we present a sequence-order constraint to reduce the false positive matches of using automatically extracted templates to predict protein-ligand binding sites. The binding site predictor comprises i) an automatically constructed template library and ii) a local structure alignment algorithm for querying the library. The sequence-order constraint is employed to identify the inconsistency between the local regions of the query protein and the templates. Experimental results reveal that the sequence-order constraint can largely reduce the false positive matches and is effective for template-based binding site prediction.

An Intelligent System Framework for Generating Activity List of a Project Using WBS Mind map and Semantic Network

Work Breakdown Structure (WBS) is one of the most vital planning processes of the project management since it is considered to be the fundamental of other processes like scheduling, controlling, assigning responsibilities, etc. In fact WBS or activity list is the heart of a project and omission of a simple task can lead to an irrecoverable result. There are some tools in order to generate a project WBS. One of the most powerful tools is mind mapping which is the basis of this article. Mind map is a method for thinking together and helps a project manager to stimulate the mind of project team members to generate project WBS. Here we try to generate a WBS of a sample project involving with the building construction using the aid of mind map and the artificial intelligence (AI) programming language. Since mind map structure can not represent data in a computerized way, we convert it to a semantic network which can be used by the computer and then extract the final WBS from the semantic network by the prolog programming language. This method will result a comprehensive WBS and decrease the probability of omitting project tasks.

On the Mechanism Broadening of Optical Spectrum of a Solvated Electron in Ammonia

The solvated electron is self-trapped (polaron) owing to strong interaction with the quantum polarization field. If the electron and quantum field are strongly coupled then the collective localized state of the field and quasi-particle is formed. In such a formation the electron motion is rather intricate. On the one hand the electron oscillated within a rather deep polarization potential well and undergoes the optical transitions, and on the other, it moves together with the center of inertia of the system and participates in the thermal random walk. The problem is to separate these motions correctly, rigorously taking into account the conservation laws. This can be conveniently done using Bogolyubov-Tyablikov method of canonical transformation to the collective coordinates. This transformation removes the translational degeneracy and allows one to develop the successive approximation algorithm for the energy and wave function while simultaneously fulfilling the law of conservation of total momentum of the system. The resulting equations determine the electron transitions and depend explicitly on the translational velocity of the quasi-particle as whole. The frequency of optical transition is calculated for the solvated electron in ammonia, and an estimate is made for the thermal-induced spectral bandwidth.

Pattern Recognition Techniques Applied to Biomedical Patterns

Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.

Run-off Storage in Sand Reservoirs as an Alternative Source of Water Supply for Rura land Semi-arid areas of South Africa

Abstraction of water from the dry river sand-beds is well-known as an alternative source of water during dry seasons. Internally, because of the form of sand particles, voids are created which can store water in the riverbeds. Large rivers are rare in South Africa. Many rivers are sand river types and without water during the prolonged dry periods. South Africa has not taken full advantage of water storage in sand as a solution to the growing water scarcity both in urban and rural areas. The paper reviews the benefits of run-off storage in sand reservoirs gained from other arid areas and need for adoption in rural areas of South Africa as an alternative water supply where it is probable.

Dispersed Error Control based on Error Filter Design for Improving Halftone Image Quality

The error diffusion method generates worm artifacts, and weakens the edge of the halftone image when the continuous gray scale image is reproduced by a binary image. First, to enhance the edges, we propose the edge-enhancing filter by considering the quantization error information and gradient of the neighboring pixels. Furthermore, to remove worm artifacts often appearing in a halftone image, we add adaptively random noise into the weights of an error filter.

Performance Evaluation of Wavelet Based Coders on Brain MRI Volumetric Medical Datasets for Storage and Wireless Transmission

In this paper, we evaluate the performance of some wavelet based coding algorithms such as 3D QT-L, 3D SPIHT and JPEG2K. In the first step we achieve an objective comparison between three coders, namely 3D SPIHT, 3D QT-L and JPEG2K. For this purpose, eight MRI head scan test sets of 256 x 256x124 voxels have been used. Results show superior performance of 3D SPIHT algorithm, whereas 3D QT-L outperforms JPEG2K. The second step consists of evaluating the robustness of 3D SPIHT and JPEG2K coding algorithm over wireless transmission. Compressed dataset images are then transmitted over AWGN wireless channel or over Rayleigh wireless channel. Results show the superiority of JPEG2K over these two models. In fact, it has been deduced that JPEG2K is more robust regarding coding errors. Thus we may conclude the necessity of using corrector codes in order to protect the transmitted medical information.

Metal Streak Analysis with different Acquisition Settings in Postoperative Spine Imaging: A Phantom Study

CT assessment of postoperative spine is challenging in the presence of metal streak artifacts that could deteriorate the quality of CT images. In this paper, we studied the influence of different acquisition parameters on the magnitude of metal streaking. A water-bath phantom was constructed with metal insertion similar with postoperative spine assessment. The phantom was scanned with different acquisition settings and acquired data were reconstructed using various reconstruction settings. Standardized ROIs were defined within streaking region for image analysis. The result shows increased kVp and mAs enhanced SNR values by reducing image noise. Sharper kernel enhanced image quality compared to smooth kernel, but produced more noise in the images with higher CT fluctuation. The noise between both kernels were significantly different (P

Controlling 6R Robot by Visionary System

In the visual servoing systems, the data obtained by Visionary is used for controlling robots. In this project, at first the simulator which was proposed for simulating the performance of a 6R robot before, was examined in terms of software and test, and in the proposed simulator, existing defects were obviated. In the first version of simulation, the robot was directed toward the target object only in a Position-based method using two cameras in the environment. In the new version of the software, three cameras were used simultaneously. The camera which is installed as eye-inhand on the end-effector of the robot is used for visual servoing in a Feature-based method. The target object is recognized according to its characteristics and the robot is directed toward the object in compliance with an algorithm similar to the function of human-s eyes. Then, the function and accuracy of the operation of the robot are examined through Position-based visual servoing method using two cameras installed as eye-to-hand in the environment. Finally, the obtained results are tested under ANSI-RIA R15.05-2 standard.

Dynamics and Control of Bouncing Ball

This paper investigates the control of a bouncing ball using Model Predictive Control. Bouncing ball is a benchmark problem for various rhythmic tasks such as juggling, walking, hopping and running. Humans develop intentions which may be perceived as our reference trajectory and tries to track it. The human brain optimizes the control effort needed to track its reference; this forms the central theme for control of bouncing ball in our investigations.

Study on the Design of Supermarket Store Layouts: The Principle of “Sales Magnet“

This study analyses store layout among the many factors that underlie supermarket store design, this; in terms of what to display in a shop and where to place the items. This report examines newly-opened stores and evaluates their interior shop floor layouts, which we then attempt to categorize by various styles. We then consider the interaction between shop floor layout and customer behavior from the perspective of the supermarket as the seller. At this point, we focus on the “store magnets"–the main sections within the shop likely to attract customers into the store.

Cost-Optimized SSB Transmitter with High Frequency Stability and Selectivity

Single side band modulation is a widespread technique in communication with significant impact on communication technologies such as DSL modems and ATSC TV. Its widespread utilization is due to its bandwidth and power saving characteristics. In this paper, we present a new scheme for SSB signal generation which is cost efficient and enjoys superior characteristics in terms of frequency stability, selectivity, and robustness to noise. In the process, we develop novel Hilbert transform properties.

Recent Developments in Electric Vehicles for Passenger Car Transport

Electric vehicles are considered as technology which can significantly reduce the problems related to road transport such as increasing GHG emissions, air pollutions and energy import dependency. The core objective of this paper is to analyze the current energetic, ecological and economic characteristics of different types of electric vehicles. The major conclusions of this analysis are: The high investments cost are the major barrier for broad market breakthrough of battery electric vehicles and fuel cell vehicles. For battery electric vehicles also the limited driving range states a key obstacle. The analyzed hybrids could in principle serve as a bridging technology. However, due to their tank-to-wheel emissions they cannot state a proper solution for urban areas. Finally, the most important perception is that also battery electric vehicles and fuel cell vehicles are environmentally benign solution if the primary fuel source is renewable.

Modeling and Simulating of Gas Turbine Cooled Blades

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

The Application of an Experimental Design for the Defect Reduction of Electrodeposition Painting on Stainless Steel Washers

The purpose of this research is to reduce the amount of incomplete coating of stainless steel washers in the electrodeposition painting process by using an experimental design technique. The surface preparation was found to be a major cause of painted surface quality. The influence of pretreating and painting process parameters, which are cleaning time, chemical concentration and shape of hanger were studied. A 23 factorial design with two replications was performed. The analysis of variance for the designed experiment showed the great influence of cleaning time and shape of hanger. From this study, optimized cleaning time was determined and a newly designed electrical conductive hanger was proved to be superior to the original one. The experimental verification results showed that the amount of incomplete coating defects decreased from 4% to 1.02% and operation cost decreased by 10.5%.

New Approach for the Modeling and the Implementation of the Object-Relational Databases

Conception is the primordial part in the realization of a computer system. Several tools have been used to help inventors to describe their software. These tools knew a big success in the relational databases domain since they permit to generate SQL script modeling the database from an Entity/Association model. However, with the evolution of the computer domain, the relational databases proved their limits and object-relational model became used more and more. Tools of present conception don't support all new concepts introduced by this model and the syntax of the SQL3 language. We propose in this paper a tool of help to the conception and implementation of object-relational databases called «NAVIGTOOLS" that allows the user to generate script modeling its database in SQL3 language. This tool bases itself on the Entity/Association and navigational model for modeling the object-relational databases.

Applicability of Diatom-Based Water Quality Assessment Indices in Dari Stream, Isparta- Turkey

Diatoms are an important group of aquatic ecosystems and diatom-based indices are increasingly becoming important tools for the assessment of ecological conditions in lotic systems. Although the studies are very limited about Turkish rivers, diatom indices were used for monitoring rivers in different basins. In the present study, we used OMNIDIA program for estimation of stream quality. Some indices have less sensitive (IDP, WAT, LOBO, GENRE, TID, CEE, PT), intermediate sensitivities (IDSE, DESCY, IPS, DI-CH, SLA, IDAP), the others higher sensitivities (SID, IBD, SHE, EPI-D). Among the investigated diatom communities, only a few taxa indicated alfa-mesosaprobity and polysaprobity. Most of the sites were characterized by a great relative contribution of eutraphent and tolerant ones as well as oligosaprobic and betamesosaprobic diatoms. In general, SID and IBD indices gave the best results. This study suggests that the structure of benthic diatom communities and diatom indices, especially SID, can be applied for monitoring rivers in Southern Turkey.