Growth and Characterization of L-Asparagine (LAS) Crystal Admixture of Paranitrophenol (PNP): A NLO Material

L-asparagine admixture Paranitrophenol (LAPNP) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 12mm×5 mm×3mm have been obtained in 15 days. The grown crystals were Brown color and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV–visible absorption spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz–Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied

Modeling of Thermal Processes Associated to an Electric Arc

The primary objective of this paper is to study the thermal effects of the electric arc on the breaker apparatus contacts for forecasting and improving the contact durability. We will propose a model which takes account of the main influence factors on the erosion contacts. This phenomenon is very complicated because the amount of ejected metal is not necessarily constituted by the whole melted metal bath but this depends on the balance of forces on the contact surface. Consequently, to calculate the metal ejection coefficient, we propose a method which consists in comparing the experimental results with the calculated ones. The proposed model estimates the mass lost by vaporization, by droplets ejection and by the extraction mechanism of liquid or solid metal. In the one-dimensional geometry, to calculate of the contact heating, we used Green’s function which expresses the point source and allows the transition to the surface source. However, for the two- dimensional model we used explicit and implicit numerical methods. The results are similar to those found by Wilson’s experiments.

ANN Based Model Development for Material Removal Rate in Dry Turning in Indian Context

This paper is intended to develop an artificial neural network (ANN) based model of material removal rate (MRR) in the turning of ferrous and nonferrous material in a Indian small-scale industry. MRR of the formulated model was proved with the testing data and artificial neural network (ANN) model was developed for the analysis and prediction of the relationship between inputs and output parameters during the turning of ferrous and nonferrous materials. The input parameters of this model are operator, work-piece, cutting process, cutting tool, machine and the environment. The ANN model consists of a three layered feedforward back propagation neural network. The network is trained with pairs of independent/dependent datasets generated when machining ferrous and nonferrous material. A very good performance of the neural network, in terms of contract with experimental data, was achieved. The model may be used for the testing and forecast of the complex relationship between dependent and the independent parameters in turning operations.

Bone Ash Impact on Soil Shear Strength

Most failures of soil have been attributed to poor shear strength. Consequently, the present paper investigated the suitability of cattle bone ash as a possible additive to improve the shear strength of soils. Four soil samples were collected and stabilized with prepared bone ash in proportions of 3%, 5%, 7%, 10%, 15% and 20% by dry weight. Chemical analyses of the bone ash; followed by classification, compaction, and triaxial shear tests of the treated soil samples were conducted. Results obtained showed that bone ash contained high proportion of calcium oxide and phosphate. Addition of bone ash to soil samples led to increase in soil shear strengths within the range of 22.40% to 105.18% over the strengths of the respective control tests. Conversely, all samples attained maximum shear strengths at 7% bone ash stabilization. The use of bone ash as an additive will therefore improve the shear strength of soils; however, using bone ash quantities in excess of 7% may not yield ample results.

Improved MARS Ciphering Using a Metamorphic-Enhanced Function

MARS is a shared-key (symmetric) block cipher algorithm supporting 128-bit block size and a variable key size of between 128 and 448 bits. MARS has a several rounds of cryptographic core that is designed to take advantage of the powerful results for improving security/performance tradeoff over existing ciphers. In this work, a new function added to improve the ciphering process it is called, Meta-Morphic function. This function use XOR, Rotating, Inverting and No-Operation logical operations before and after encryption process. The aim of these operations is to improve MARS cipher process and makes a high confusion criterion for the Ciphertext.

CFD Study of the Fluid Viscosity Variation and Effect on the Flow in a Stirred Tank

Stirred tanks are widely used in all industrial sectors. The need for further studies of the mixing operation and its different aspects comes from the diversity of agitation tools and implemented geometries in addition to the specific characteristics of each application. Viscous fluids are often encountered in industry and they represent the majority of treated cases, as in the polymer sector, food processing, pharmaceuticals and cosmetics. That's why in this paper, we will present a three-dimensional numerical study using the software Fluent, to study the effect of varying the fluid viscosity in a stirred tank with a Rushton turbine. This viscosity variation was performed by adding carboxymethylcellulose (CMC) to the fluid (water) in the vessel. In this work, we studied first the flow generated in the tank with a Rushton turbine. Second, we studied the effect of the fluid viscosity variation on the thermodynamic quantities defining the flow. For this, three viscosities (0.9% CMC, 1.1% CMC and 1.7% CMC) were considered.

Kinetics of Cu (II) Transport through Bulk Liquid Membrane with Different Membrane Materials

The kinetics of Cu(II) transport through a bulk liquid membrane with different membrane materials was investigated in this work. Three types of membrane materials were used: fresh cooking oil, waste cooking oil and kerosene, each of which was mixed with di-2-ethylhexylphosphoric acid (carrier) and tributylphosphate (modifier). Kinetic models derived from the kinetic laws of two consecutive irreversible first-order reactions were used to study the facilitated transport of Cu(II) across the source, membrane and receiving phases of bulk liquid membrane. It was found that the transport kinetics of Cu(II) across the source phase was not affected by different types of membrane materials but decreased considerably when the membrane materials changed from kerosene, waste cooking oil to fresh cooking oil. The rate constants of Cu(II) removal and recovery processes through the bulk liquid membrane were also determined.

Decolorization and COD Reduction Efficiency of Magnesium over Iron based Salt for the Treatment of Textile Wastewater Containing Diazo and Anthraquinone Dyes

Magnesium chloride, though cost wise roughly same as of ferrous sulphate, is less commonly used coagulant in comparison to the ferrous sulphate for the treatment of wastewater. The present study was conducted to investigate the comparative effectiveness of ferrous sulphate (FeSO4.7H2O) as iron based salt and magnesium chloride (MgCl2) as magnesium based salt in terms of decolorization and chemical oxygen demand (COD) reduction efficiency of textile wastewater. The coagulants were evaluated for synthetic textile wastewater containing two diazo dyes namely Reactive Black 5 (RB5) and Congo Red (CR) and one anthraquinone dye as Disperse Blue 3 (DB3), in seven possible equi-ratio combinations. Other chemical constituents that are normally released from different textile processing units were also added to replicate a practical scenario. From this study, MgCl2/Lime was found to be a superior coagulant system as compared to FeSO4.7H2O/Lime, FeSO4.7H2O/NaOH and MgCl2/NaOH.

Development and Optimization of Colon Targeted Drug Delivery System of Ayurvedic Churna Formulation Using Eudragit L100 and Ethyl Cellulose as Coating Material

The purpose of this study was to prepare time and pH dependent release tablets of Ayurvedic Churna formulation and evaluate their advantages as colon targeted drug delivery system. The Vidangadi Churna was selected for this study which contains Embelin and Gallic acid. Embelin is used in Helminthiasis as therapeutic agent. Embelin is insoluble in water and unstable in gastric environment so it was formulated in time and pH dependent tablets coated with combination of two polymers Eudragit L100 and ethyl cellulose. The 150mg of core tablet of dried extract and lactose were prepared by wet granulation method. The compression coating was used in the polymer concentration of 150mg for both the layer as upper and lower coating tablet was investigated. The results showed that no release was found in 0.1 N HCl and pH 6.8 phosphate buffers for initial 5 hours and about 98.97% of the drug was released in pH 7.4 phosphate buffer in total 17 Hours. The in vitro release profiles of drug from the formulation could be best expressed first order kinetics as highest linearity (r2= 0.9943). The results of the present study have demonstrated that the time and pH dependent tablets system is a promising vehicle for preventing rapid hydrolysis in gastric environment and improving oral bioavailability of Embelin and Gallic acid for treatment of Helminthiasis.

A Study on Teachers’, Students’ and Their Parents’ Views on the FATIH Project

This study investigated the views of teachers, students and their parents on the FATIH (Movement of Enhancing Opportunities and Improving Technology) Project, which was put into service by the Ministry of National Education in cooperation with the Ministry of Transportation in Turkey in November 2010 for the purpose of increasing students’ success and planned to be completed within 5 years. The study group consisted of teachers employed in a pilot school in the province of Karaman in central Turkey included within the scope of the FATIH Project, students attending this school and parents whose children are students in that school. The research data were collected through forms developed by the researchers to determine the views of teachers, students and parents on the FATIH Project. The descriptive analysis method, one of the qualitative research methods, was used in the study. An analysis of the data revealed that a large majority of the teachers and the students believed that if computers were used to serve their set purpose, then they could make considerable contributions to education. A large majority of the parents, on the other hand, regard the use of computers in education as a great opportunity for the students. The views of the teachers, students and parents on the FATIH Project usually overlap. Most of the participants in the study pointed out that the FATIH Project was intended to use technology effectively in education. Moreover, each individual participant described their role in the FATIH Project in accordance with their relative position and stated that they could perform whatever was expected of them for the effective and efficient use and progress of the Project. The views of the participants regarding the FATIH Project vary according to the kind of the participants.

Development and Validation of a UPLC Method for the Determination of Albendazole Residues on Pharmaceutical Manufacturing Equipment Surfaces

In Pharmaceutical industries, it is very important to remove drug residues from the equipment and areas used. The cleaning procedure must be validated, so special attention must be devoted to the methods used for analysis of trace amounts of drugs. A rapid, sensitive and specific reverse phase ultra performance liquid chromatographic (UPLC) method was developed for the quantitative determination of Albendazole in cleaning validation swab samples. The method was validated using an ACQUITY HSS C18, 50 x 2.1mm, 1.8μ column with a isocratic mobile phase containing a mixture of 1.36g of Potassium dihydrogenphosphate in 1000mL MilliQ water, 2mL of triethylamine and pH adjusted to 2.3 ± 0.05 with ortho-phosphoric acid, Acetonitrile and Methanol (50:40:10 v/v). The flow rate of the mobile phase was 0.5 mL min-1 with a column temperature of 350C and detection wavelength at 254nm using PDA detector. The injection volume was 2µl. Cotton swabs, moisten with acetonitrile were used to remove any residue of drug from stainless steel, teflon, rubber and silicon plates which mimic the production equipment surface and the mean extraction-recovery was found to be 91.8. The selected chromatographic condition was found to effectively elute Albendazole with retention time of 0.67min. The proposed method was found to be linear over the range of 0.2 to 150µg/mL and correlation coefficient obtained is 0.9992. The proposed method was found to be accurate, precise, reproducible and specific and it can also be used for routine quality control analysis of these drugs in biological samples either alone or in combined pharmaceutical dosage forms.

Mathematical Modeling of a Sub-Wet Bulb Temperature Evaporative Cooling Using Porous Ceramic Materials

Indirect Evaporative Cooling process has the advantage of supplying cool air at constant moisture content. However, such system can only supply air at temperatures above wet bulb temperature. This paper presents a mathematical model for a Sub-wet bulb temperature indirect evaporative cooling arrangement that can overcome this limitation and supply cool air at temperatures approaching dew point and without increasing its moisture content. In addition, the use of porous ceramics as wet media materials offers the advantage of integration into building elements. Results of the computer show the proposed design is capable of cooling air to temperatures lower than the ambient wet bulb temperature and achieving wet bulb effectiveness of about 1.17.

Effect of pH and Ionic Exchange on the Reactivity of Bioglass/Chitosan Composites Used as a Bone Graft Substitute

Chitosan (CH) material reinforced by bioactive glass (46S6) was fabricated. 46S6 containing 17% wt% CH was studied in vitro and in vivo. Physicochemical techniques, such as Fourier transform infrared spectroscopy (FT-IR), coupled plasma optical emission spectrometry (ICP-OES) analysis were used. The behavior of 46S6CH17 was studied by measuring the in situ pH in a SBF solution. The 46S6CH17 was implanted in the rat femoral condyl. In vitro 46S6CH17 gave an FTIR - spectrum in which three absorption bands with the maxima at 565, 603 and 1039cm-1 after 3 days of soaking in physiological solution. They are assigned to stretching vibrations of PO4^3- group in phosphate crystalline. Moreover, the pH measurement was decreased in the SBF solution. The stability of the calcium phosphate precipitation depended on the pH value. In vivo, a rise in the Ca and phosphate P ions concentrations in the implanted microenvironment was determined.

Effect of Support Distance on Damage of Drilled Thin CFRP Laminates

Severe damages may occur during the drilling of carbon fiber reinforced plastics (CFRP). In practice, this damage is limited by adding a backup support to the drilled parts. For some aeronautical parts with curvatures, backing up parts is a demanding process. In order to simplify the operation, this research studies the effect of using a configurable setup to support parts on the resulting quality of drilled holes. The test coupons referenced in this study are twenty four-plies unidirectional laminates made of carbon fibers and epoxy resin. Different signals were measured during the drilling process for these laminates, including the thrust force, the displacement and the acceleration. The processing of these signals demonstrated that the damage is due to the combination of two main factors: the spring-back of the thin part and the thrust force. The results found were confirmed for different feeds and speeds. When the distance between supports is increased, it is observed that the spring-back increases but the thrust force decreases. The study proves the feasibility of unsupported drilling of thin CFRP laminates without creating any observable damage.

Effect of Formulation Compositions on Particle Size and Zeta Potential of Diclofenac Sodium-Loaded Chitosan Nanoparticles

This study was conducted to formulate diclofenac sodium-loaded chitosan nanoparticles and to study the effect of formulation compositions on particle size and zeta potential of chitosan nanoparticles (CSN) containing diclofenac sodium (DC) prepared by ionotropic gelation method. It was found that the formulations containing chitosan, DC and tripolyphosphate (TPP) at a weight ratio of 4:1:1, respectively, with various pH provided various systems. At pH 5.0 and 6.0, the obtained systems were turbid because of precipitation of DC and chitosan, respectively. However, the dispersed system of CSN possessing diameter of 108±1 nm and zeta potential of 19±1 mV could be obtained at pH 5.5. These CSN also showed spherical morphology observed via a transmission scanning electron microscope. Change in weight ratio of chitosan:DC:TPP i.e. 1:1:1, 2:1:1, 3:1:1 and 4:1:1 showed that these ratios led to precipitation of particles except for the ratio of 4:1:1 providing CSN properly. The effect of Tween 80 as a stabilizer was also determined. It suggested that increment of Tween 80 concentration to 0.02% w/v could stabilize CSN at least 48 hours. However, increment of Tween 80 to 0.03% w/v led to quick precipitation of particles. The study of effect of TPP suggested that increment of TPP concentration increased particle size but decreased zeta potential. The excess TPP caused precipitation of CSN. Therefore, the optimized CSN was the CSN containing chitosan, DC and TPP at the ratio of 4:1:1and 0.02% w/v Tween 80 prepared at pH 5.5. Their particle size, zeta potential and entrapment efficiency were 128±1 nm, 15±1 mV and 45.8±2.6%, respectively.

GIC-Based Adsorbents for Wastewater Treatment through Adsorption and Electrochemical-Regeneration

Intercalation imparts interesting features to the host graphite material. Two different types of intercalated compounds called (GIC-bisulphate or Nyex 1000 and GIC-nitrate or Nyex 3000) were tested for their adsorption capacity and ability to undergo electrochemical regeneration. It was found that Nyex 3000 showed comparatively slow kinetics along with reduced adsorption capacity to one half for acid violet 17 as adsorbate. Acid violet 17 was selected as model organic pollutant for evaluating comparative performance of said adsorbents. Both adsorbent materials showed 100% regeneration efficiency as achieved by passing a charge of 36 C g-1 at a current density of 12 mA cm-2 and a treatment time of 60 min.  

Study the Efficacies of Green Manure Application as Chickpea Pre Plant

In order to Study the efficacy application of green manure as chickpea pre plant, field experiments were carried out in 2007 and 2008 growing seasons. In this research the effects of different strategies for soil fertilization were investigated on grain yield and yield component, minerals, organic compounds and cooking time of chickpea. Experimental units were arranged in splitsplit plots based on randomized complete blocks with three replications. Main plots consisted of (G1): establishing a mixed vegetation of Vicia panunica and Hordeum vulgare and (G2): control, as green manure levels. Also, five strategies for obtaining the base fertilizer requirement including (N1): 20 t.ha-1 farmyard manure; (N2): 10 t.ha-1 compost; (N3): 75 kg.ha-1 triple super phosphate; (N4): 10 t.ha-1 farmyard manure + 5 t.ha-1 compost and (N5): 10 t.ha-1 farmyard manure + 5 t.ha-1 compost + 50 kg.ha-1 triple super phosphate were considered in sub plots. Furthermoree four levels of biofertilizers consisted of (B1): Bacillus lentus + Pseudomonas putida; (B2): Trichoderma harzianum; (B3): Bacillus lentus + Pseudomonas putida + Trichoderma harzianum; and (B4): control (without biofertilizers) were arranged in sub-sub plots. Results showed that integrating biofertilizers (B3) and green manure (G1) produced the highest grain yield. The highest amounts of yield were obtained in G1×N5 interaction. Comparison of all 2-way and 3-way interactions showed that G1N5B3 was determined as the superior treatment. Significant increasing of N, P2O5, K2O, Fe and Mg content in leaves and grains emphasized on superiority of mentioned treatment because each one of these nutrients has an approved role in chlorophyll synthesis and photosynthesis abilities of the crops. The combined application of compost, farmyard manure and chemical phosphorus (N5) in addition to having the highest yield, had the best grain quality due to high protein, starch and total sugar contents, low crude fiber and reduced cooking time.

Temperature Effect on the Organic Solar Cells Parameters

In this work, the influence of temperature on the different parameters of solar cells based on organic semiconductors are studied. The short circuit current Isc increases so monotonous with temperature and then saturates to a maximum value before decreasing at high temperatures. The open circuit voltage Vco decreases linearly with temperature. The fill factor FF and efficiency, which are directly related with Isc and Vco follow the variations of the letters. The phenomena are explained by the behaviour of the mobility which is a temperature activated process.

Effect of Incorporating Silica Fume in Fly Ash Geopolymers

This paper presents results of an experimental study performed to investigate effect of incorporating silica fume on physico-mechanical properties and durability of resulting fly ash geopolymers. Geopolymer specimens were prepared by activating fly ash incorporated with additional silica fume in the range of 2.5% to 5%, with a mixture of sodium hydroxide and sodium silicate solution having Na2O content of 8%. For studying durability, 10% magnesium sulphate solution was used to immerse the specimens up to a period of 15 weeks during which visual observation, weight changes and strength changes were monitored regularly. Addition of silica fume lowers performance of geopolymer pastes. However, in mortars, addition of silica fume significantly enhanced physico-mechanical properties and durability.

Promotion of Growth and Modulation of As- Induced Stress Ethylene in Maize by As- Tolerant ACC Deaminase Producing Bacteria

One of the major pollutants in the environment is arsenic (As). Due to the toxic effects of As to all organisms, its remediation is necessary. Conventional technologies used in the remediation of As contaminated soils are expensive and may even compromise the structure of the soil. An attractive alternative is phytoremediation, which is the use of plants which can take up the contaminant in their tissues. Plant growth promoting bacteria (PGPB) has been known to enhance growth of plants through several mechanisms such as phytohormone production, phosphate solubilization, siderophore production and 1-aminocyclopropane-1- carboxylate (ACC) deaminase production, which is an essential trait that aids plants especially under stress conditions such as As stress. Twenty one bacteria were isolated from As-contaminated soils in the vicinity of the Janghang Smelter in Chungnam Province, South Korea. These exhibited high tolerance to either arsenite (As III) or arsenate (As V) or both. Most of these isolates possess several plant growth promoting traits which can be potentially exploited to increase phytoremediation efficiency. Among the identified isolates is Pseudomonas sp. JS1215, which produces ACC deaminase, indole acetic acid (IAA), and siderophore. It also has the ability to solubilize phosphate. Inoculation of JS1215 significantly enhanced root and shoot length and biomass accumulation of maize under normal conditions. In the presence of As, particularly in lower As level, inoculation of JS1215 slightly increased root length and biomass. Ethylene increased with increasing As concentration, but was reduced by JS1215 inoculation. JS1215 can be a potential bioinoculant for increasing phytoremediation efficiency.