GIC-Based Adsorbents for Wastewater Treatment through Adsorption and Electrochemical-Regeneration

Intercalation imparts interesting features to the host graphite material. Two different types of intercalated compounds called (GIC-bisulphate or Nyex 1000 and GIC-nitrate or Nyex 3000) were tested for their adsorption capacity and ability to undergo electrochemical regeneration. It was found that Nyex 3000 showed comparatively slow kinetics along with reduced adsorption capacity to one half for acid violet 17 as adsorbate. Acid violet 17 was selected as model organic pollutant for evaluating comparative performance of said adsorbents. Both adsorbent materials showed 100% regeneration efficiency as achieved by passing a charge of 36 C g-1 at a current density of 12 mA cm-2 and a treatment time of 60 min.  





References:
[1] O. J. H. Hao & P.C. Chiang (2000) Decolorization of wastewater.
Critical Review, Environmental Science Technology, Vol. 30 (4) pp.
449–505.
[2] S. M. Ghoreishi & R. Haghighi (2003) Chemical catalytic reaction and
biological oxidation for treatment of non-biodegradable textile effluent.
Chemical Engineering Journal, Vol. 95 pp. 163–169
[3] N. Capalash & P. Sharma (1992) Bio-degradation of textile azo-dyes by
phane-rochaete chrysosporium. World journal of microbiology and
biotechnology, Vol. 8 pp. 309–312.
[4] F. C. Z. A. Abidin & N. R. Rehmat (2010) Multistage ozonation and
biological treatment for removal of azo-dye industrial effluent.
International journal of environmental science and development, Vol. 1
(2) pp. 193-198
[5] K. K. Robinson & J. L. Jens (1990) Granulated activated carbon for
water treatment. United States Patent 4954469
[6] A. L. Barros, T. M. Pizzolato, E. Carrisimi & I. A. H. Schneider (2006)
Decolorizing dye waste water from the agate industry with fenton
oxidation process. Minerals engineering, Vol. 19 pp. 87-90
[7] T. M. Pizzolato, E. Carissimi, E. L. Machado & I. A. H. Schneider
(2002) Color removal with NaClO of dye waste water from an agateprocessing
plant in Rio Grande do Sul, Brazil. International journal of
mineral processing, Vol. 65 pp. 203-211
[8] I. Arslan, I. A. Balcioglu & D. W. Bahnemman (2000) Advanced
chemical oxidation of reactive dyes in simulated dye-house effluents by
ferrioxalated fenton/ UV-A and TiO2/UA-A processes. Dyes and
pigments, Vol. 47 pp. 207-218
[9] N. W. Brown, E. P. L. Roberts, A. A. Garforth & R. A. W. Dryfe (2004)
Treatment of dye house effluents with carbon based adsorbent using
anodic oxidation regeneration. Water Science and Technology, Vol. 49
(4) pp. 219–225.
[10] N. W. Brown, E. P. L. Roberts, A. Chasiotis, T. Cherdron & N.
Sanghrajaka (2004) Atrazine removal using adsorption and
electrochemical regeneration.Water Research, Vol. 38 pp. 3067–3074.
[11] N. W. Brown, E. P. L. Roberts, A. A. Garforth & R. A. W. Dryfe (2004)
Electrochemical regeneration of a carbon based adsorbent loaded with
crystal violet dye. Electrochimica Acta, Vol. 49 pp. 3269–3281.
[12] N. W. Brown & E. P. L. Roberts (2007) Electrochemical pre–treatment
of effluents containing chlorinated compounds using an adsorbent.
Journal of Applied Electrochemistry, Vol. 37 (11) pp. 1329 – 1335.
[13] M. M. Fadhil, E. P. L. Roberts, A. K. Campen & N. W. Brown (2012)
Waste-water treatment by multi-stage batch adsorption and
electrochemical regeneration. Journal of electrochemical science and
engineering, doi: 10.5599/jese.2012.0019
[14] M. G. Conti-ramsdon, H. M. A. Asghar, S. N. Hussain, E. P. L. Roberts
& N. W. Brown (2012) Removal of mercaptans from gas stream using
continuous adsorption-regeneration. Water science and technology, Vol.
66 (9) pp.1849-1855
[15] S. N. Hussain, E. P. L. Roberts, H. M. A. Asghar, A. K. Campen &
N.W. Brown (2013) Oxidation of phenol and adsorption of breakdown
products using a graphite adsorbent with electrochemical regeneration.
Electrochimica acta, Vol. 92 pp.20-30
[16] S. N. Hussain, H. M. A. Asghar, A. K. Campen, N. W. Brown & E. P. L.
Roberts (2013) Break down products formed due to oxidation of
adsorbed phenol by electrochemical regeneration of a graphite
adsorbent. Electrochimica acta. Doi: jelectacta.2013.03.017
[17] H. M. A. Asghar, S. N. Hussain, E. P. L. Roberts, A. K. Campen & N.
W. Brown (2013) Pre-treatment of adsorbents for wastewater treatment
using adsorption coupled with electrochemical regeneration. Journal of
industrial engineering and chemistry, doi: 10.1016/j.jiec 2013.02.007
[18] H. M. A. Asghar, E. P. L. Roberts, S. N. Hussain, A. K. Campen & N.
W. Brown (2012) Wastewater treatment using adsorption and
electrochemical regeneration using graphite based adsorbents. Journal of
applied electrochemistry, Vol. 42(9) pp. 797-807
[19] R. M. Narbaitz & J. Cen (1994). Electrochemical regeneration of
granular activated carbon. Water Research, Vol. 28 (8) pp. 1771–1778.
[20] M. H. Zho & L. C. Lei (2006) Electrochemical regeneration of activated
carbon loaded with p-nitro phenol in a fluidized electrochemical reactor.
Electrochimica acta, Vol. 51 pp.4489-4496
[21] H. M. A. Asghar (2011) Development of graphitic adsorbents for
wastewater treatment using adsorption and electrochemical regeneration.
PhD thesis, submitted to the University of Manchester, UK.
[22] H. M. A. Asghar, S. N. Hussain, E. P. L. Roberts, N. W. Brown & H.
Sattar (2012). Development of composite adsorbent for wastewater
treatment using adsorption and electrochemical regeneration.
Proceedings of the world academy of science, engineering &
technology, 72 2012.