Strategies for Developing e-LMS for Tanzania Secondary Schools

Tanzania secondary schools in rural areas are geographically and socially isolated, hence face a number of problems in getting learning materials resulting in poor performance in National examinations. E-learning as defined to be the use of information and communication technology (ICT) for supporting the educational processes has motivated Tanzania to apply ICT in its education system. There has been effort to improve secondary school education using ICT through several projects. ICT for e-learning to Tanzania rural secondary school is one of the research projects conceived by the University of Dar-es-Salaam through its College of Engineering and Technology. The main objective of the project is to develop a tool to enable ICT support rural secondary school. The project is comprehensive with a number of components, one being development of e-learning management system (e-LMS) for Tanzania secondary schools. This paper presents strategies of developing e-LMS. It shows the importance of integrating action research methodology with the modeling methods as presented by model driven architecture (MDA) and the usefulness of Unified Modeling Language (UML) on the issue of modeling. The benefit of MDA will go along with the development based on software development life cycle (SDLC) process, from analysis and requirement phase through design and implementation stages as employed by object oriented system analysis and design approach. The paper also explains the employment of open source code reuse from open source learning platforms for the context sensitive development of the e-LMS for Tanzania secondary schools.

The Pixel Value Data Approach for Rainfall Forecasting Based on GOES-9 Satellite Image Sequence Analysis

To develop a process of extracting pixel values over the using of satellite remote sensing image data in Thailand. It is a very important and effective method of forecasting rainfall. This paper presents an approach for forecasting a possible rainfall area based on pixel values from remote sensing satellite images. First, a method uses an automatic extraction process of the pixel value data from the satellite image sequence. Then, a data process is designed to enable the inference of correlations between pixel value and possible rainfall occurrences. The result, when we have a high averaged pixel value of daily water vapor data, we will also have a high amount of daily rainfall. This suggests that the amount of averaged pixel values can be used as an indicator of raining events. There are some positive associations between pixel values of daily water vapor images and the amount of daily rainfall at each rain-gauge station throughout Thailand. The proposed approach was proven to be a helpful manual for rainfall forecasting from meteorologists by which using automated analyzing and interpreting process of meteorological remote sensing data.

Instructional Design and Development Utilizing Technology: A Student Perspective

The sequence Analyze, Design, Develop, Implement, and Evaluate (ADDIE) provides a powerful methodology for designing computer-based educational materials. Helping students to understand this design process sequence may be achieved by providing them with direct, guided experience. This article examines such help and guidance and the overall learning process from a student-s personal experience.

Novel Anti-leukemia Calanone Compounds by Quantitative Structure-Activity Relationship AM1 Semiempirical Method

Quantitative Structure-Activity Relationship (QSAR) approach for discovering novel more active Calanone derivative as anti-leukemia compound has been conducted. There are 6 experimental activities of Calanone compounds against leukemia cell L1210 that are used as material of the research. Calculation of theoretical predictors (independent variables) was performed by AM1 semiempirical method. The QSAR equation is determined by Principle Component Regression (PCR) analysis, with Log IC50 as dependent variable and the independent variables are atomic net charges, dipole moment (μ), and coefficient partition of noctanol/ water (Log P). Three novel Calanone derivatives that obtained by this research have higher activity against leukemia cell L1210 than pure Calanone.

A New Approach to Annotate the Text's of the Websites and Documents with a Quite Comprehensive Knowledge Base

Machine-understandable data when strongly interlinked constitutes the basis for the SemanticWeb. Annotating web documents is one of the major techniques for creating metadata on the Web. Annotating websites defines the containing data in a form which is suitable for interpretation by machines. In this paper, we present a new approach to annotate websites and documents by promoting the abstraction level of the annotation process to a conceptual level. By this means, we hope to solve some of the problems of the current annotation solutions.

Minimal Residual Method for Adaptive Filtering with Finite Termination

We present a discussion of three adaptive filtering algorithms well known for their one-step termination property, in terms of their relationship with the minimal residual method. These algorithms are the normalized least mean square (NLMS), Affine Projection algorithm (APA) and the recursive least squares algorithm (RLS). The NLMS is shown to be a result of the orthogonality condition imposed on the instantaneous approximation of the Wiener equation, while APA and RLS algorithm result from orthogonality condition in multi-dimensional minimal residual formulation. Further analysis of the minimal residual formulation for the RLS leads to a triangular system which also possesses the one-step termination property (in exact arithmetic)

Photonic Crystal Waveguide 1x3 Flexible Power Splitter for Optical Network

A compact 1x3 power splitter based on Photonic Crystal Waveguides (PCW) with flexible power splitting ratio is presented in this paper. Multimode interference coupler (MMI) is integrated with PCW. The device size reduction compared with the conventional MMI power splitter is attributed to the large dispersion of the PCW. Band Solve tool is used to calculate the band structure of PCW. Finite Difference Time Domain (FDTD) method is adopted to simulate the relevant structure at 1550nm wavelength. The device is polarization insensitive and allows the control of output (o/p) powers within certain percentage points for both polarizations.

Intelligent ABS Fuzzy Controller for Diverse RoadSurfaces

Fuzzy controllers are potential candidates for the control of nonlinear, time variant and also complicated systems. Anti lock brake system (ABS) which is a nonlinear system, may not be easily controlled by classical control methods. An intelligent Fuzzy control method is very useful for this kind of nonlinear system. A typical antilock brake system (ABS) by sensing the wheel lockup, releases the brakes for a short period of time, and then reapplies again the brakes when the wheel spins up. In this paper, an intelligent fuzzy ABS controller is designed to adjust slipping performance for variety of roads. There are tow major sections in the proposing control system. First section consists of tow Fuzzy-Logic Controllers (FLC) providing optimal brake torque for both front and rear wheels. Second section which is also a FLC provides required amount of slip and torque references properties for different kind of roads. Simulation results of our proposed intelligent ABS for three different kinds of road show more reliable and better performance in compare with two other break systems.

Biodiesel Production from Palm Oil using Heterogeneous Base Catalyst

In this study, the transesterification of palm oil with methanol for biodiesel production was studied by using CaO–ZnO as a heterogeneous base catalyst prepared by incipient-wetness impregnation (IWI) and co-precipitation (CP) methods. The reaction parameters considered were molar ratio of methanol to oil, amount of catalyst, reaction temperature, and reaction time. The optimum conditions–15:1 molar ratio of methanol to oil, a catalyst amount of 6 wt%, reaction temperature of 60 °C, and reaction time of 8 h–were observed. The effects of Ca loading, calcination temperature, and catalyst preparation on the catalytic performance were studied. The fresh and spent catalysts were characterized by several techniques, including XRD, TPR, and XRF.

A Review on WEB Resources in Teaching of Geotechnical Engineering

The use of computer hardware and software in education and training dates to the early 1940s, when American researchers developed flight simulators which used analog computers to generate simulated onboard instrument data.Computer software is widely used to help engineers and undergraduate student solve their problems quickly and more accurately. This paper presents the list of computer software in geotechnical engineering.

Limitations of the Analytic Hierarchy Process Technique with Respect to Geographically Distributed Stakeholders

The selection of appropriate requirements for product releases can make a big difference in a product success. The selection of requirements is done by different requirements prioritization techniques. These techniques are based on pre-defined and systematic steps to calculate the requirements relative weight. Prioritization is complicated by new development settings, shifting from traditional co-located development to geographically distributed development. Stakeholders, connected to a project, are distributed all over the world. These geographically distributions of stakeholders make it hard to prioritize requirements as each stakeholder have their own perception and expectations of the requirements in a software project. This paper discusses limitations of the Analytical Hierarchy Process with respect to geographically distributed stakeholders- (GDS) prioritization of requirements. This paper also provides a solution, in the form of a modified AHP, in order to prioritize requirements for GDS. We will conduct two experiments in this paper and will analyze the results in order to discuss AHP limitations with respect to GDS. The modified AHP variant is also validated in this paper.

Symmetry Breaking and the Emergence of Branching Structures in Morphogenesis: Minimal Conditions and Mechanical Interactions between Cells

The minimal condition for symmetry breaking in morphogenesis of cellular population was investigated using cellular automata based on reaction-diffusion dynamics. In particular, the study looked for the possibility of the emergence of branching structures due to mechanical interactions. The model used two types of cells an external gradient. The results showed that the external gradient influenced movement of cell type-I, also revealed that clusters formed by cells type-II worked as barrier to movement of cells type-I.

Political Finance in Africa: Ethiopia as a Case Study

Since 1991 Ethiopia has officially adopted multi-party democracy. At present, there are 89 registered political parties in the country. Though political parties play an important role in the functioning of a democratic government, how to fund them is an issue of major concern. Political parties and individual candidates running for political office have to raise funds for election campaigns, and to survive as political candidates. The aim of this paper is to examine party funding problems in Africa by taking the case of Ethiopia as an example. The paper also evaluates the motives of local and international donors in giving financial and material support to political parties in emerging democracies and assesses the merits and de-merits of their donations.

Vector Control Using Series Iron Loss Model of Induction, Motors and Power Loss Minimization

The iron loss is a source of detuning in vector controlled induction motor drives if the classical rotor vector controller is used for decoupling. In fact, the field orientation will not be satisfied and the output torque will not truck the reference torque mostly used by Loss Model Controllers (LMCs). In addition, this component of loss, among others, may be excessive if the vector controlled induction motor is driving light loads. In this paper, the series iron loss model is used to develop a vector controller immune to iron loss effect and then an LMC to minimize the total power loss using the torque generated by the speed controller.

Non-Isolated Direct AC-DC Converter Design with BCM-PFC Circuit

This paper proposes two types of non-isolated direct AC-DC converters. First, it shows a buck-boost converter with an H-bridge, which requires few components (three switches, two diodes, one inductor and one capacitor) to convert AC input to DC output directly. This circuit can handle a wide range of output voltage. Second, a direct AC-DC buck converter is proposed for lower output voltage applications. This circuit is analyzed with output voltage of 12V. We describe circuit topologies, operation principles and simulation results for both circuits.

Alternative Convergence Analysis for a Kind of Singularly Perturbed Boundary Value Problems

A kind of singularly perturbed boundary value problems is under consideration. In order to obtain its approximation, simple upwind difference discretization is applied. We use a moving mesh iterative algorithm based on equi-distributing of the arc-length function of the current computed piecewise linear solution. First, a maximum norm a posteriori error estimate on an arbitrary mesh is derived using a different method from the one carried out by Chen [Advances in Computational Mathematics, 24(1-4) (2006), 197-212.]. Then, basing on the properties of discrete Green-s function and the presented posteriori error estimate, we theoretically prove that the discrete solutions computed by the algorithm are first-order uniformly convergent with respect to the perturbation parameter ε.

Prediction of Slump in Concrete using Artificial Neural Networks

High Strength Concrete (HSC) is defined as concrete that meets special combination of performance and uniformity requirements that cannot be achieved routinely using conventional constituents and normal mixing, placing, and curing procedures. It is a highly complex material, which makes modeling its behavior a very difficult task. This paper aimed to show possible applicability of Neural Networks (NN) to predict the slump in High Strength Concrete (HSC). Neural Network models is constructed, trained and tested using the available test data of 349 different concrete mix designs of High Strength Concrete (HSC) gathered from a particular Ready Mix Concrete (RMC) batching plant. The most versatile Neural Network model is selected to predict the slump in concrete. The data used in the Neural Network models are arranged in a format of eight input parameters that cover the Cement, Fly Ash, Sand, Coarse Aggregate (10 mm), Coarse Aggregate (20 mm), Water, Super-Plasticizer and Water/Binder ratio. Furthermore, to test the accuracy for predicting slump in concrete, the final selected model is further used to test the data of 40 different concrete mix designs of High Strength Concrete (HSC) taken from the other batching plant. The results are compared on the basis of error function (or performance function).

A Case Study of Reactive Focus on Form through Negotiation on Spoken Errors: Does It Work for All Learners?

This case study investigates the effects of reactive focus on form through negotiation on the linguistic development of an adult EFL learner in an exclusive private EFL classroom. The findings revealed that in this classroom negotiated feedback occurred significantly more often than non-negotiated feedback. However, it was also found that in the long run the learner was significantly more successful in correcting his own errors when he had received nonnegotiated feedback than negotiated feedback. This study, therefore, argues that although negotiated feedback seems to be effective for some learners in the short run, it is non-negotiated feedback which seems to be more effective in the long run. This long lasting effect might be attributed to the impact of schooling system which is itself indicative of the dominant culture, or to the absence of other interlocutors in the course of interaction.

Development System for Emotion Detection Based on Brain Signals and Facial Images

Detection of human emotions has many potential applications. One of application is to quantify attentiveness audience in order evaluate acoustic quality in concern hall. The subjective audio preference that based on from audience is used. To obtain fairness evaluation of acoustic quality, the research proposed system for multimodal emotion detection; one modality based on brain signals that measured using electroencephalogram (EEG) and the second modality is sequences of facial images. In the experiment, an audio signal was customized which consist of normal and disorder sounds. Furthermore, an audio signal was played in order to stimulate positive/negative emotion feedback of volunteers. EEG signal from temporal lobes, i.e. T3 and T4 was used to measured brain response and sequence of facial image was used to monitoring facial expression during volunteer hearing audio signal. On EEG signal, feature was extracted from change information in brain wave, particularly in alpha and beta wave. Feature of facial expression was extracted based on analysis of motion images. We implement an advance optical flow method to detect the most active facial muscle form normal to other emotion expression that represented in vector flow maps. The reduce problem on detection of emotion state, vector flow maps are transformed into compass mapping that represents major directions and velocities of facial movement. The results showed that the power of beta wave is increasing when disorder sound stimulation was given, however for each volunteer was giving different emotion feedback. Based on features derived from facial face images, an optical flow compass mapping was promising to use as additional information to make decision about emotion feedback.

Seasonal Water Quality Trends in the Feitsui Reservoir Watershed, Taiwan

Protecting is the sources of drinking water is the first barrier of contamination of drinking water. The Feitsui Reservoir watershed of Taiwan supplies domestic water for around 5 million people in the Taipei metropolitan area. Understanding the spatial patterns of water quality trends in this watershed is an important agenda for management authorities. This study examined 7 sites in the watershed for water quality parameters regulated in the standard for drinking water source. The non-parametric seasonal Mann-Kendall-s test was used to determine significant trends for each parameter. Significant trends of increasing pH occurred at the sampling station in the uppermost stream watershed, and in total phosphorus at 4 sampling stations in the middle and downstream watershed. Additionally, the multi-scale land cover assessment and average land slope were used to explore the influence on the water quality in the watershed. Regression models for predicting water quality were also developed.