The Effect of Dispersed MWCNTs Using SDBS Surfactant on Bacterial Growth

Carbon nanotubes (CNTs) are attractive because of their excellent chemical durability mechanical strength and electrical properties. Therefore there is interest in CNTs for not only electrical and mechanical application, but also biological and medical application. In this study, the dispersion power of surfactant-treated multiwalled carbon nanotubes (MWCNTs) and their effect on the antibacterial activity were examined. Surfactant was used sodium dodecyl-benzenesulfonate (SDBS). UV-vis absorbance and transmission electron microscopy(TEM) were used to characterize the dispersion of MWCNTs in the aqueous phase, showing that the surfactant molecules had been adsorbed onto the MWCNTs surface. The surfactant-treated MWCNTs exhibited antimicrobial activities to streptococcus mutans. The optical density growth curves and viable cell number determined by the plating method suggested that the antimicrobial activity of surfactant-treated MWCNTs was both concentration and treatment time-dependent.

Parallel-computing Approach for FFT Implementation on Digital Signal Processor (DSP)

An efficient parallel form in digital signal processor can improve the algorithm performance. The butterfly structure is an important role in fast Fourier transform (FFT), because its symmetry form is suitable for hardware implementation. Although it can perform a symmetric structure, the performance will be reduced under the data-dependent flow characteristic. Even though recent research which call as novel memory reference reduction methods (NMRRM) for FFT focus on reduce memory reference in twiddle factor, the data-dependent property still exists. In this paper, we propose a parallel-computing approach for FFT implementation on digital signal processor (DSP) which is based on data-independent property and still hold the property of low-memory reference. The proposed method combines final two steps in NMRRM FFT to perform a novel data-independent structure, besides it is very suitable for multi-operation-unit digital signal processor and dual-core system. We have applied the proposed method of radix-2 FFT algorithm in low memory reference on TI TMSC320C64x DSP. Experimental results show the method can reduce 33.8% clock cycles comparing with the NMRRM FFT implementation and keep the low-memory reference property.

Energy Consumptions of Different Building Heating Systems for Various Meteorological Regions of Iran: A Comparison Study

To simulate heating systems in buildings, a research oriented computer code has been developed in Sharif University of Technology in Iran where the climate, existing heating equipment in buildings, consumer behavior and their interactions are considered for simulating energy consumption in conventional systems such as heaters, radiators and fan-coils. In order to validate the computer code, the available data of five buildings was used and the computed consumed energy was compared with the estimated energy extracted from monthly bills. The initial heating system was replaced by the alternative system and the effect of this change was observed on the energy consumption. As a result, the effect of changing heating equipment on energy consumption was investigated in different climates. Changing heater to radiator renders energy conservation up to 50% in all climates and changing radiator to fan-coil decreases energy consumption in climates with cold and dry winter.

Biochemical Characteristics of Sorghum Flour Fermented and/or Supplemented with Chickpea Flour

Sorghum flour was supplemented with 15 and 30% chickpea flour. Sorghum flour and the supplement were fermented at 35 oC for 0, 8, 16, and 24 h. Changes in pH, titrable acidity, total soluble solids, protein content, in vitro protein digestibility and amino acid composition were investigated during fermentation and/or after supplementation of sorghum flour with chickpea. The pH of the fermenting material decreased sharply with a concomitant increase in the titrable acidity. The total soluble solids remained unchanged with progressive fermentation time. The protein content of sorghum cultivar was found to be 9.27 and that of chickpea was 22.47%. The protein content of sorghum cultivar after supplementation with15 and 30% chickpea was significantly (P ≤ 0.05) increased to 11.78 and 14.55%, respectively. The protein digestibility also increased after fermentation from 13.35 to 30.59 and 40.56% for the supplements, respectively. Further increment in protein content and digestibility was observed when supplemented and unsupplemented samples were fermented for different periods of time. Cooking of fermented samples was found to increase the protein content slightly and decreased digestibility for both supplements. Amino acid content of fermented and fermented and cooked supplements was determined. Supplementation was found to increase the lysine and therionine content. Cooking following fermentation decreased lysine, isoleucine, valine and sulfur containg amino acids.

Multimode Dynamics of the Beijing Road Traffic System

The Beijing road traffic system, as a typical huge urban traffic system, provides a platform for analyzing the complex characteristics and the evolving mechanisms of urban traffic systems. Based on dynamic network theory, we construct the dynamic model of the Beijing road traffic system in which the dynamical properties are described completely. Furthermore, we come into the conclusion that urban traffic systems can be viewed as static networks, stochastic networks and complex networks at different system phases by analyzing the structural randomness. As well as, we demonstrate the evolving process of the Beijing road traffic network based on real traffic data, validate the stochastic characteristics and the scale-free property of the network at different phases

A Task-Based Design Approach for Augmented Reality Systems

User interaction components of Augmented Reality (AR) systems have to be tested with users in order to find and fix usability problems as early as possible. In this paper we will report on a user-centered design approach for AR systems following the experience acquired during the design and evaluation of a software prototype for an AR-based educational platform. In this respect we will focus on the re-design of the user task based on the results from a formative usability evaluation. The basic idea of our approach is to describe task scenarios in a tabular format, to develop a task model in a task modeling environment and then to simulate the execution.

Response of Wax Apple Cultivars by Applied GA3 and 2,4-D on Fruit Growth and Fruit Quality

The experiment was performed to evaluate the effect of GA3, 2,4-D on fruit growth and fruit quality of wax apple. The experiment consisted of Red A, Monulla, Atu, Red B cultivars. GA3 and 2,4-D were applied at the small bud and petal fall stage. Physiological, biochemical characters of fruit were recoded. The result showed application of GA3, 2,4-D greatly response in increasing fruit set for all treatment as compared to control. Fruit weight, fruit size were increased at 10 ppm 2,4-D in ‘Red A’, ‘Red B’, however it was also enhancing at 10 ppm GA3 in ‘Monulla’, ‘Atu’. For ‘Monulla’, ‘Atu’ fruit crack reduced by 10 ppm 2,4-D application, but ‘Red B’, ‘Red A’ gave least fruit crack at 10 and 30 ppm GA3, respectively. ‘Monulla’, ‘Atu’ and ‘Red B’ resulted in response well to 10 ppm GA3 on improving TSS, whereas application of 30 ppm GA3 greatly enhancing TSS in ‘Red A’. For ‘Atu’ titratable acidity markedly reduced by 10 ppm GA3 application, but spraying with 30 ppm GA3 greatly response in reducing titratable acidity in ‘Red A’, ‘Red B’ and ‘Monulla’. It was concluded that GA3, 2,4-D can be an effective tool to enhancing fruit set, fruit growth as well as improving fruit quality of wax apple.

A Utilitarian Approach to Modeling Information Flows in Social Networks

We propose a multi-agent based utilitarian approach to model and understand information flows in social networks that lead to Pareto optimal informational exchanges. We model the individual expected utility function of the agents to reflect the net value of information received. We show how this model, adapted from a theorem by Karl Borch dealing with an actuarial Risk Exchange concept in the Insurance industry, can be used for social network analysis. We develop a utilitarian framework that allows us to interpret Pareto optimal exchanges of value as potential information flows, while achieving a maximization of a sum of expected utilities of information of the group of agents. We examine some interesting conditions on the utility function under which the flows are optimal. We illustrate the promise of this new approach to attach economic value to information in networks with a synthetic example.

Numerical Study of Microscale Gas Flow-Separation Using Explicit Finite Volume Method

Pressure driven microscale gas flow-separation has been investigated by solving the compressible Navier-Stokes (NS) system of equations. A two dimensional explicit finite volume (FV) compressible flow solver has been developed using modified advection upwind splitting methods (AUSM+) with no-slip/first order Maxwell-s velocity slip conditions to predict the flowseparation behavior in microdimensions. The effects of scale-factor of the flow geometry and gas species on the microscale gas flowseparation have been studied in this work. The intensity of flowseparation gets reduced with the decrease in scale of the flow geometry. In reduced dimension, flow-separation may not at all be present under similar flow conditions compared to the larger flow geometry. The flow-separation patterns greatly depend on the properties of the medium under similar flow conditions.

Heat Treatment and Rest-Inserted Exercise Enhances EMG Activity of the Lower Limb

Prolonged immobilization leads to significant weakness and atrophy of the skeletal muscle and can also impair the recovery of muscle strength following injury. Therefore, it is important to minimize the period under immobilization and accelerate the return to normal activity. This study examined the effects of heat treatment and rest-inserted exercise on the muscle activity of the lower limb during knee flexion/extension. Twelve healthy subjects were assigned to 4 groups that included: (1) heat treatment + rest-inserted exercise; (2) heat + continuous exercise; (3) no heat + rest-inserted exercise; and (4) no heat + continuous exercise. Heat treatment was applied for 15 mins prior to exercise. Continuous exercise groups performed knee flexion/extension at 0.5 Hz for 300 cycles without rest whereas rest-inserted exercise groups performed the same exercise but with 2 mins rest inserted every 60 cycles of continuous exercise. Changes in the rectus femoris and hamstring muscle activities were assessed at 0, 1, and 2 weeks of treatment by measuring the electromyography signals of isokinetic maximum voluntary contraction. Significant increases in both the rectus femoris and hamstring muscles were observed after 2 weeks of treatment only when both heat treatment and rest-inserted exercise were performed. These results suggest that combination of various treatment techniques, such as heat treatment and rest-inserted exercise, may expedite the recovery of muscle strength following immobilization.

CFD Simulation of Non-Newtonian Fluid Flow in Arterial Stenoses with Surface Irregularities

CFD simulations are carried out in arterial stenoses with 48 % areal occlusion. Non-newtonian fluid model is selected for the blood flow as the same problem has been solved before with Newtonian fluid model. Studies on flow resistance with the presence of surface irregularities are carried out. Investigations are also performed on the pressure drop at various Reynolds numbers. The present study revealed that the pressure drop across a stenosed artery is practically unaffected by surface irregularities at low Reynolds numbers, while flow features are observed and discussed at higher Reynolds numbers.

Fast 3D Collision Detection Algorithm using 2D Intersection Area

There are many researches to detect collision between real object and virtual object in 3D space. In general, these techniques are need to huge computing power. So, many research and study are constructed by using cloud computing, network computing, and distribute computing. As a reason of these, this paper proposed a novel fast 3D collision detection algorithm between real and virtual object using 2D intersection area. Proposed algorithm uses 4 multiple cameras and coarse-and-fine method to improve accuracy and speed performance of collision detection. In the coarse step, this system examines the intersection area between real and virtual object silhouettes from all camera views. The result of this step is the index of virtual sensors which has a possibility of collision in 3D space. To decide collision accurately, at the fine step, this system examines the collision detection in 3D space by using the visual hull algorithm. Performance of the algorithm is verified by comparing with existing algorithm. We believe proposed algorithm help many other research, study and application fields such as HCI, augmented reality, intelligent space, and so on.

Requirements and Guidelines for the Design of Team Awareness Systems

This paper presents a set of guidelines for the design of multi-user awareness systems. In a first step, general requirements for team awareness systems are analyzed. In the second part of the paper, the identified requirements are aggregated and transformed into concrete design guidelines for the development of team awareness systems.

T-DOF PID Controller Design using Characteristic Ratio Assignment Method for Quadruple Tank Process

A control system design with Characteristic Ratio Assignment (CRA) is proven that effective for SISO control design. But the control system design for MIMO via CRA is not concrete procedure. In this paper presents the control system design method for quadruple-tank process via CRA. By using the decentralized method for both minimum phase and non-minimum phase are made. The results from PI and PID controller design via CRA can be illustrated the validity of our approach by MATLAB.

Developing Marketing Strategy in Nonmetallic Mineral Industry at the Business Level

This study extends research on the relationship between marketing strategy and market segmentation by investigating on market segments in the cement industry. Competitive strength and rivals distance from the factory were used as business environment. A three segment (positive, neutral or indifferent and zero zones) were identified as strategic segments. For each segment a marketing strategy (aggressive, defensive and decline) were developed. This study employed data from cement industry to fulfill two objectives, the first is to give a framework to the segmentation of cement industry and the second is developing marketing strategy with varying competitive strength. Fifty six questionnaires containing close-and open-ended questions were collected and analyzed. Results supported the theory that segments tend to be more aggressive than defensive when competitive strength increases. It is concluded that high strength segments follow total market coverage, concentric diversification and frontal attack to their competitors. With decreased competitive strength, Business tends to follow multi-market strategy, product modification/improvement and flank attack to direct competitors for this kind of segments. Segments with weak competitive strength followed focus strategy and decline strategy.

A Simulation Study of Bullwhip Effect in a Closed-Loop Supply Chain with Fuzzy Demand and Fuzzy Collection Rate under Possibility Constraints

Along with forward supply chain organization needs to consider the impact of reverse logistics due to its economic advantage, social awareness and strict legislations. In this paper, we develop a system dynamics framework for a closed-loop supply chain with fuzzy demand and fuzzy collection rate by incorporating product exchange policy in forward channel and various recovery options in reverse channel. The uncertainty issues associated with acquisition and collection of used product have been quantified using possibility measures. In the simulation study, we analyze order variation at both retailer and distributor level and compare bullwhip effects of different logistics participants over time between the traditional forward supply chain and the closed-loop supply chain. Our results suggest that the integration of reverse logistics can reduce order variation and bullwhip effect of a closed-loop system. Finally, sensitivity analysis is performed to examine the impact of various parameters on recovery process and bullwhip effect.

Prediction of Henry's Constant in Polymer Solutions using the Peng-Robinson Equation of State

The peng-Robinson (PR), a cubic equation of state (EoS), is extended to polymers by using a single set of energy (A1, A2, A3) and co-volume (b) parameters per polymer fitted to experimental volume data. Excellent results for the volumetric behavior of the 11 polymer up to 2000 bar pressure are obtained. The EoS is applied to the correlation and prediction of Henry constants in polymer solutions comprising three polymer and many nonpolar and polar solvents, including supercritical gases. The correlation achieved with two adjustable parameter is satisfactory compared with the experimental data. As a result, the present work provides a simple and useful model for the prediction of Henry's constant for polymer containing systems including those containing polar, nonpolar and supercritical fluids.

A Method to Annotate Programs with High-Level Knowledge of Computation

When programming in languages such as C, Java, etc., it is difficult to reconstruct the programmer's ideas only from the program code. This occurs mainly because, much of the programmer's ideas behind the implementation are not recorded in the code during implementation. For example, physical aspects of computation such as spatial structures, activities, and meaning of variables are not required as instructions to the computer and are often excluded. This makes the future reconstruction of the original ideas difficult. AIDA, which is a multimedia programming language based on the cyberFilm model, can solve these problems allowing to describe ideas behind programs using advanced annotation methods as a natural extension to programming. In this paper, a development environment that implements the AIDA language is presented with a focus on the annotation methods. In particular, an actual scientific numerical computation code is created and the effects of the annotation methods are analyzed.

A Multi-objective Fuzzy Optimization Method of Resource Input Based on Genetic Algorithm

With the increasing complexity of engineering problems, the traditional, single-objective and deterministic optimization method can not meet people-s requirements. A multi-objective fuzzy optimization model of resource input is built for M chlor-alkali chemical eco-industrial park in this paper. First, the model is changed into the form that can be solved by genetic algorithm using fuzzy theory. And then, a fitness function is constructed for genetic algorithm. Finally, a numerical example is presented to show that the method compared with traditional single-objective optimization method is more practical and efficient.

Context Aware Lightweight Energy Efficient Framework

Context awareness is a capability whereby mobile computing devices can sense their physical environment and adapt their behavior accordingly. The term context-awareness, in ubiquitous computing, was introduced by Schilit in 1994 and has become one of the most exciting concepts in early 21st-century computing, fueled by recent developments in pervasive computing (i.e. mobile and ubiquitous computing). These include computing devices worn by users, embedded devices, smart appliances, sensors surrounding users and a variety of wireless networking technologies. Context-aware applications use context information to adapt interfaces, tailor the set of application-relevant data, increase the precision of information retrieval, discover services, make the user interaction implicit, or build smart environments. For example: A context aware mobile phone will know that the user is currently in a meeting room, and reject any unimportant calls. One of the major challenges in providing users with context-aware services lies in continuously monitoring their contexts based on numerous sensors connected to the context aware system through wireless communication. A number of context aware frameworks based on sensors have been proposed, but many of them have neglected the fact that monitoring with sensors imposes heavy workloads on ubiquitous devices with limited computing power and battery. In this paper, we present CALEEF, a lightweight and energy efficient context aware framework for resource limited ubiquitous devices.