Multi-Rate Exact Discretization based on Diagonalization of a Linear System - A Multiple-Real-Eigenvalue Case

A multi-rate discrete-time model, whose response agrees exactly with that of a continuous-time original at all sampling instants for any sampling periods, is developed for a linear system, which is assumed to have multiple real eigenvalues. The sampling rates can be chosen arbitrarily and individually, so that their ratios can even be irrational. The state space model is obtained as a combination of a linear diagonal state equation and a nonlinear output equation. Unlike the usual lifted model, the order of the proposed model is the same as the number of sampling rates, which is less than or equal to the order of the original continuous-time system. The method is based on a nonlinear variable transformation, which can be considered as a generalization of linear similarity transformation, which cannot be applied to systems with multiple eigenvalues in general. An example and its simulation result show that the proposed multi-rate model gives exact responses at all sampling instants.

Weighted Clustering Coefficient for Identifying Modular Formations in Protein-Protein Interaction Networks

This paper describes a novel approach for deriving modules from protein-protein interaction networks, which combines functional information with topological properties of the network. This approach is based on weighted clustering coefficient, which uses weights representing the functional similarities between the proteins. These weights are calculated according to the semantic similarity between the proteins, which is based on their Gene Ontology terms. We recently proposed an algorithm for identification of functional modules, called SWEMODE (Semantic WEights for MODule Elucidation), that identifies dense sub-graphs containing functionally similar proteins. The rational underlying this approach is that each module can be reduced to a set of triangles (protein triplets connected to each other). Here, we propose considering semantic similarity weights of all triangle-forming edges between proteins. We also apply varying semantic similarity thresholds between neighbours of each node that are not neighbours to each other (and hereby do not form a triangle), to derive new potential triangles to include in module-defining procedure. The results show an improvement of pure topological approach, in terms of number of predicted modules that match known complexes.

Using the Geographic Information System (GIS) in the Sustainable Transportation

The significance of emissions from the road transport sector (such as air pollution, noise, etc) has grown considerably in recent years. In Australia, 14.3% of national greenhouse gas emissions in 2000 were the transport sector-s share which 12.9% of net national emissions were related to a road transport alone. Considering the growing attention to the green house gas(GHG) emissions, this paper attempts to provide air pollution modeling aspects of environmental consequences of the road transport by using one of the best computer based tools including the Geographic Information System (GIS). In other word, in this study, GIS and its applications is explained, models which are used to model air pollution and GHG emissions from vehicles are described and GIS is applied in real case study that attempts to forecast GHG emission from people who travel to work by car in 2031 in Melbourne for analysing results as thematic maps.

Transformer Top-Oil Temperature Modeling and Simulation

The winding hot-spot temperature is one of the most critical parameters that affect the useful life of the power transformers. The winding hot-spot temperature can be calculated as function of the top-oil temperature that can estimated by using the ambient temperature and transformer loading measured data. This paper proposes the estimation of the top-oil temperature by using a method based on Least Squares Support Vector Machines approach. The estimated top-oil temperature is compared with measured data of a power transformer in operation. The results are also compared with methods based on the IEEE Standard C57.91-1995/2000 and Artificial Neural Networks. It is shown that the Least Squares Support Vector Machines approach presents better performance than the methods based in the IEEE Standard C57.91-1995/2000 and artificial neural networks.

A Novel Digital Calibration Technique for Gain and Offset Mismatch in TIΣΔ ADCs

Time interleaved sigma-delta (TIΣΔ) architecture is a potential candidate for high bandwidth analog to digital converters (ADC) which remains a bottleneck for software and cognitive radio receivers. However, the performance of the TIΣΔ architecture is limited by the unavoidable gain and offset mismatches resulting from the manufacturing process. This paper presents a novel digital calibration method to compensate the gain and offset mismatch effect. The proposed method takes advantage of the reconstruction digital signal processing on each channel and requires only few logic components for implementation. The run time calibration is estimated to 10 and 15 clock cycles for offset cancellation and gain mismatch calibration respectively.

Verified Experiment: Intelligent Fuzzy Weighted Input Estimation Method to Inverse Heat Conduction Problem

In this paper, the innovative intelligent fuzzy weighted input estimation method (FWIEM) can be applied to the inverse heat transfer conduction problem (IHCP) to estimate the unknown time-varying heat flux efficiently as presented. The feasibility of this method can be verified by adopting the temperature measurement experiment. We would like to focus attention on the heat flux estimation to three kinds of samples (Copper, Iron and Steel/AISI 304) with the same 3mm thickness. The temperature measurements are then regarded as the inputs into the FWIEM to estimate the heat flux. The experiment results show that the proposed algorithm can estimate the unknown time-varying heat flux on-line.

Investigation of a Wearable Textile Monopole Antenna on Specific Absorption Rate at 2.45 GHz

This paper discusses the investigation of a wearable textile monopole antenna on specific absorption rate (SAR) for bodycentric wireless communication applications at 2.45 GHz. The antenna is characterized on a realistic 8 x 8 x 8 mm3 resolution truncated Hugo body model in CST Microwave Studio software. The result exhibited that the simulated SAR values were reduced significantly by 83.5% as the position of textile monopole was varying between 0 mm and 15 mm away from the human upper arm. A power absorption reduction of 52.2% was also noticed as the distance of textile monopole increased.

An Overall Approach to the Communication of Organizations in Conventional and Virtual Offices

Organizational communication is an administrative function crucial especially for executives in the implementation of organizational and administrative functions. Executives spend a significant part of their time on communicative activities. Doing his or her daily routine, arranging meeting schedules, speaking on the telephone, reading or replying to business correspondence, or fulfilling the control functions within the organization, an executive typically engages in communication processes. Efficient communication is the principal device for the adequate implementation of administrative and organizational activities. For this purpose, management needs to specify the kind of communication system to be set up and the kind of communication devices to be used. Communication is vital for any organization. In conventional offices, communication takes place within the hierarchical pyramid called the organizational structure, and is known as formal or informal communication. Formal communication is the type that works in specified structures within the organizational rules and towards the organizational goals. Informal communication, on the other hand, is the unofficial type taking place among staff as face-to-face or telephone interaction. Communication in virtual as well as conventional offices is essential for obtaining the right information in administrative activities and decision-making. Virtual communication technologies increase the efficiency of communication especially in virtual teams. Group communication is strengthened through an inter-group central channel. Further, ease of information transmission makes it possible to reach the information at the source, allowing efficient and correct decisions. Virtual offices can present as a whole the elements of information which conventional offices produce in different environments. At present, virtual work has become a reality with its pros and cons, and will probably spread very rapidly in coming years, in line with the growth in information technologies.

Carbon Sources Utilization Profiles of Thermophilic Phytase Producing Bacteria Isolated from Hot-spring in Malaysia

Phytases (myo-inositol hexakisphosphate phosphohydrolases; EC 3.1.3.8) catalyze the hydrolysis of phytic acid (myoinositol hexakisphosphate) to the mono-, di-, tri-, tetra-, and pentaphosphates of myo-inositol and inorganic phosphate. Therrmophilic bacteria isolated from water sampled from hot spring. About 120 isolates of bacteria were successfully isolated form hot spring water sample and tested for extracellular phytase producing. After 5 passages of the screening on the PSM media, 4 isolates were found stable in producing phytase enzyme. The 16s RDNA sequencing for identification of bacteria using molecular technique revealed that all isolates those positive in phytase producing are belong to Geobacillus spp. And Anoxybacillus spp. Anoxybacillus rupiensis UniSZA-7 were identified for their carbon source utilization using Phenotype Microarray Plate of Biolog and found they utilize several kind of carbon source provided.

Comparison among Various Question Generations for Decision Tree Based State Tying in Persian Language

Performance of any continuous speech recognition system is highly dependent on performance of the acoustic models. Generally, development of the robust spoken language technology relies on the availability of large amounts of data. Common way to cope with little data for training each state of Markov models is treebased state tying. This tying method applies contextual questions to tie states. Manual procedure for question generation suffers from human errors and is time consuming. Various automatically generated questions are used to construct decision tree. There are three approaches to generate questions to construct HMMs based on decision tree. One approach is based on misrecognized phonemes, another approach basically uses feature table and the other is based on state distributions corresponding to context-independent subword units. In this paper, all these methods of automatic question generation are applied to the decision tree on FARSDAT corpus in Persian language and their results are compared with those of manually generated questions. The results show that automatically generated questions yield much better results and can replace manually generated questions in Persian language.

Formation Control of Mobile Robots

In this paper, we study the formation control problem for car-like mobile robots. A team of nonholonomic mobile robots navigate in a terrain with obstacles, while maintaining a desired formation, using a leader-following strategy. A set of artificial potential field functions is proposed using the direct Lyapunov method for the avoidance of obstacles and attraction to their designated targets. The effectiveness of the proposed control laws to verify the feasibility of the model is demonstrated through computer simulations

Application of Neuro-Fuzzy Dynamic Programming to Improve the Reactive Power and Voltage Profile of a Distribution Substation

Improving the reactive power and voltage profile of a distribution substation is investigated in this paper. The purpose is to properly determination of the shunt capacitors on/off status and suitable tap changer (TC) position of a substation transformer. In addition, the limitation of secondary bus voltage, the maximum allowable number of switching operation in a day for on load tap changer and on/off status of capacitors are taken into account. To achieve these goals, an artificial neural network (ANN) is designed to provide preliminary scheduling. Input of ANN is active and reactive powers of transformer and its primary and secondary bus voltages. The output of ANN is capacitors on/off status and TC position. The preliminary schedule is further refined by fuzzy dynamic programming in order to reach the final schedule. The operation of proposed method in Q/V improving is compared with the results obtained by operator operation in a distribution substation.

A Content Vector Model for Text Classification

As a popular rank-reduced vector space approach, Latent Semantic Indexing (LSI) has been used in information retrieval and other applications. In this paper, an LSI-based content vector model for text classification is presented, which constructs multiple augmented category LSI spaces and classifies text by their content. The model integrates the class discriminative information from the training data and is equipped with several pertinent feature selection and text classification algorithms. The proposed classifier has been applied to email classification and its experiments on a benchmark spam testing corpus (PU1) have shown that the approach represents a competitive alternative to other email classifiers based on the well-known SVM and naïve Bayes algorithms.

Prime Cordial Labeling on Graphs

A prime cordial labeling of a graph G with vertex set V is a bijection f from V to {1, 2, ..., |V |} such that each edge uv is assigned the label 1 if gcd(f(u), f(v)) = 1 and 0 if gcd(f(u), f(v)) > 1, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. In this paper we exhibit some characterization results and new constructions on prime cordial graphs.

Learning Based On Computer Science Unplugged in Computer Science Education: Design, Development, and Assessment

Although, all high school students in Japan are required to learn informatics, many of them do not learn this topic sufficiently. In response to this situation, we propose a support package for high school informatics classes. To examine what students learned and if they sufficiently understood the context of the lessons, a questionnaire survey was distributed to 186 students. We analyzed the results of the questionnaire and determined the weakest units, which were “basic computer configuration” and “memory and secondary storage”. We then developed a package for teaching these units. We propose that our package be applied in high school classrooms.

Lattice Monte Carlo Analyses of Thermal Diffusion in Laminar Flow

Lattice Monte Carlo methods are an excellent choice for the simulation of non-linear thermal diffusion problems. In this paper, and for the first time, Lattice Monte Carlo analysis is performed on thermal diffusion combined with convective heat transfer. Laminar flow of water modeled as an incompressible fluid inside a copper pipe with a constant surface temperature is considered. For the simulation of thermal conduction, the temperature dependence of the thermal conductivity of the water is accounted for. Using the novel Lattice Monte Carlo approach, temperature distributions and energy fluxes are obtained.

RANFIS : Rough Adaptive Neuro-Fuzzy Inference System

The paper presents a new hybridization methodology involving Neural, Fuzzy and Rough Computing. A Rough Sets based approximation technique has been proposed based on a certain Neuro – Fuzzy architecture. A New Rough Neuron composition consisting of a combination of a Lower Bound neuron and a Boundary neuron has also been described. The conventional convergence of error in back propagation has been given away for a new framework based on 'Output Excitation Factor' and an inverse input transfer function. The paper also presents a brief comparison of performances, of the existing Rough Neural Networks and ANFIS architecture against the proposed methodology. It can be observed that the rough approximation based neuro-fuzzy architecture is superior to its counterparts.

Damage Evolution of Underground Structural Reinforced Concrete Small-Scale Static-Loading Experiments

Small-scale RC models of both piles and tunnel ducts were produced as mockups of reality and loaded under soil confinement conditionsto investigate the damage evolution of structural RC interacting with soil. Experimental verifications usinga 3D nonlinear FE analysis program called COM3D, which was developed at the University of Tokyo, are introduced. This analysis has been used in practice for seismic performance assessment of underground ducts and in-ground LNG storage tanks in consideration of soil-structure interactionunder static and dynamic loading. Varying modes of failure of RCpilessubjected to different magnitudes of soil confinement were successfully reproduced in the proposed small-scale experiments and numerically simulated as well. Analytical simulation was applied to RC tunnel mockups under a wide variety of depth and soil confinement conditions, and reasonable matching was confirmed.

Theoretical Investigation of Carbazole-Based D-D-π-A Organic Dyes for Efficient Dye-Sensitized Solar Cell

In this paper, four carbazole-based D-D-π-A organic dyes code as CCT2A, CCT3A, CCT1PA and CCT2PA were reported. A series of these organic dyes containing identical donor and acceptor group but different π-system. The effect of replacing of thiophene by phenyl thiophene as π-system on the physical properties has been focused. The structural, energetic properties and absorption spectra were theoretically investigated by means of Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT). The results show that nonplanar conformation due to steric hindrance in donor part (cabazolecarbazole unit) of dye molecule can prevent unfavorable dye aggregation. By means of the TD-DFT method, the absorption spectra were calculated by B3LYP and BHandHLYP to study the affect of hybrid functional on the excitation energy (Eg). The results revealed the increasing of thiophene units not only resulted in decreasing of Eg, but also found the shifting of absorption spectra to higher wavelength. TD-DFT/BHandHLYP calculated results are more strongly agreed with the experimental data than B3LYP functions. Furthermore, the adsorptions of CCT2A and CCT3A on the TiO2 anatase (101) surface were carried out by mean of the chemical periodic calculation. The result exhibit the strong adsorption energy. The calculated results provide our new organic dyes can be effectively used as dye for Dye Sensitized Solar Cell (DSC).

Antioxidants Reveal Protection against the Biochemical Changes in Liver, Kidney and Blood Profiles after Clindamycin / Ibuprofen Administration in Dental Patients

The adverse effects of Clindamycin (Clind.) / Ibuprofen (Ibu.) combination on liver, kidney, blood elements and the significances of antioxidants (N-acetylcysteine and Zinc) against these effects were evaluated. The study includes: Group I; control n=30, Group II; patients on Clind.300mg/Ibu.400mg twice daily for a week n=30, Group III; patients on Clind.300mg/Ibu.400mg+Nacetylcysteine 200mg twice daily for a week n=15 and Group IV; patients on Clind.300mg/Ibu.400mg+Zinc50mg twice daily for a week n=15. Serum malondialdehyde (MDA), alanine transferase (ALT), aspartate transferase (AST), γ glutamyl transferase (GGT), creatinine, blood urea nitrogen (BUN) were measured. Applying one way ANOVA followed by Tuckey Kramer post test, Group II showed significant increase in ALT, AST, GGT, BUN and decrease in Hb, RBCs, platelets than Group I. Group III showed significant decrease in ALT, AST, GGT, BUN than Group II. Moreover, Group IV showed significant decrease in ALT, AST, GGT and increase in Hb, RBCs, and platelets than Group II. Conclusively, Adding Zinc or Nacetylcysteine buffer the oxidative stress and improve the therapeutic outcome of Clindamycin/Ibuprofen combination.