Studying Mistaken Theory of Calendar Function of Iran-s Cross-Vaults

After presenting the theory of calendar function of Iran-s cross-vaults especially “Niasar" cross-vault in recent years, there has been lots of doubts and uncertainty about this theory by astrologists and archaeologists. According to this theory “Niasar cross-vault and other cross-vaults of Iran has calendar function and are constructed in a way that sunrise and sunset can be seen from one of its openings in the beginning and middle of each season of year". But, mentioning historical documentaries we conclude here that the theory of calendar function of Iran-s cross-vaults does not have any strong basis and individual cross-vaults had only religious function in Iran.

Environmental Management of the Tanning Industry's Supply Chain: An Integration Model from Lean Supply Chain, Green Supply Chain, Cleaner Production and ISO 14001:2004

The environmental impact caused by industries is an issue that, in the last 20 years, has become very important in terms of society, economics and politics in Colombia. Particularly, the tannery process is extremely polluting because of uneffective treatments and regulations given to the dumping process and atmospheric emissions. Considering that, this investigation is intended to propose a management model based on the integration of Lean Supply Chain, Green Supply Chain, Cleaner Production and ISO 14001-2004, that prioritizes the strategic components of the organizations. As a result, a management model will be obtained and it will provide a strategic perspective through a systemic approach to the tanning process. This will be achieved through the use of Multicriteria Decision tools, along with Quality Function Deployment and Fuzzy Logic. The strategic approach that embraces the management model using the alignment of Lean Supply Chain, Green Supply Chain, Cleaner Production and ISO 14001-2004, is an integrated perspective that allows a gradual frame of the tactical and operative elements through the correct setting of the information flow, improving the decision making process. In that way, Small Medium Enterprises (SMEs) could improve their productivity, competitiveness and as an added value, the minimization of the environmental impact. This improvement is expected to be controlled through a Dashboard that helps the Organization measure its performance along the implementation of the model in its productive process.

An Energy-Latency-Efficient MAC Protocol for Wireless Sensor Networks

Because nodes are usually battery-powered, the energy presents a very scarce resource in wireless sensor networks. For this reason, the design of medium access control had to take energy efficiency as one of its hottest concerns. Accordingly, in order to improve the energy performance of MAC schemes in wireless sensor networks, several ways can be followed. In fact, some researchers try to limit idle listening while others focus on mitigating overhearing (i.e. a node can hear a packet which is destined to another node) or reducing the number of the used control packets. We, in this paper, propose a new hybrid MAC protocol termed ELE-MAC (i.e. Energy Latency Efficient MAC). The ELE-MAC major design goals are energy and latency efficiencies. It adopts less control packets than SMAC in order to preserve energy. We carried out ns- 2 simulations to evaluate the performance of the proposed protocol. Thus, our simulation-s results prove the ELE-MAC energy efficiency. Additionally, our solution performs statistically the same or better latency characteristic compared to adaptive SMAC.

Classification of Initial Stripe Height Patterns using Radial Basis Function Neural Network for Proportional Gain Prediction

This paper aims to improve a fine lapping process of hard disk drive (HDD) lapping machines by removing materials from each slider together with controlling the strip height (SH) variation to minimum value. The standard deviation is the key parameter to evaluate the strip height variation, hence it is minimized. In this paper, a design of experiment (DOE) with factorial analysis by twoway analysis of variance (ANOVA) is adopted to obtain a statistically information. The statistics results reveal that initial stripe height patterns affect the final SH variation. Therefore, initial SH classification using a radial basis function neural network is implemented to achieve the proportional gain prediction.

Evolutionary Algorithms for the Multiobjective Shortest Path Problem

This paper presents an overview of the multiobjective shortest path problem (MSPP) and a review of essential and recent issues regarding the methods to its solution. The paper further explores a multiobjective evolutionary algorithm as applied to the MSPP and describes its behavior in terms of diversity of solutions, computational complexity, and optimality of solutions. Results show that the evolutionary algorithm can find diverse solutions to the MSPP in polynomial time (based on several network instances) and can be an alternative when other methods are trapped by the tractability problem.

Dynamic Fuzzy-Neural Network Controller for Induction Motor Drive

In this paper, a novel approach for robust trajectory tracking of induction motor drive is presented. By combining variable structure systems theory with fuzzy logic concept and neural network techniques, a new algorithm is developed. Fuzzy logic was used for the adaptation of the learning algorithm to improve the robustness of learning and operating of the neural network. The developed control algorithm is robust to parameter variations and external influences. It also assures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the designed controller of induction motor drives which considered as highly non linear dynamic complex systems and variable characteristics over the operating conditions.

Fractal Patterns for Power Quality Detection Using Color Relational Analysis Based Classifier

This paper proposes fractal patterns for power quality (PQ) detection using color relational analysis (CRA) based classifier. Iterated function system (IFS) uses the non-linear interpolation in the map and uses similarity maps to construct various fractal patterns of power quality disturbances, including harmonics, voltage sag, voltage swell, voltage sag involving harmonics, voltage swell involving harmonics, and voltage interruption. The non-linear interpolation functions (NIFs) with fractal dimension (FD) make fractal patterns more distinguishing between normal and abnormal voltage signals. The classifier based on CRA discriminates the disturbance events in a power system. Compared with the wavelet neural networks, the test results will show accurate discrimination, good robustness, and faster processing time for detecting disturbing events.

A Tool for Audio Quality Evaluation Under Hostile Environment

In this paper is to evaluate audio and speech quality with the help of Digital Audio Watermarking Technique under the different types of attacks (signal impairments) like Gaussian Noise, Compression Error and Jittering Effect. Further attacks are considered as Hostile Environment. Audio and Speech Quality Evaluation is an important research topic. The traditional way for speech quality evaluation is using subjective tests. They are reliable, but very expensive, time consuming, and cannot be used in certain applications such as online monitoring. Objective models, based on human perception, were developed to predict the results of subjective tests. The existing objective methods require either the original speech or complicated computation model, which makes some applications of quality evaluation impossible.

Enhanced Conference Organization Based On Correlation of Web Information and Ontology Based Expertise Search

From the importance of the conference and its constructive role in the studies discussion, there must be a strong organization that allows the exploitation of the discussions in opening new horizons. The vast amount of information scattered across the web, make it difficult to find experts, who can play a prominent role in organizing conferences. In this paper we proposed a new approach of extracting researchers- information from various Web resources and correlating them in order to confirm their correctness. As a validator of this approach, we propose a service that will be useful to set up a conference. Its main objective is to find appropriate experts, as well as the social events for a conference. For this application we us Semantic Web technologies like RDF and ontology to represent the confirmed information, which are linked to another ontology (skills ontology) that are used to present and compute the expertise.

Design of a Fuzzy Feed-forward Controller for Monitor HAGC System of Cold Rolling Mill

In this study we propose a novel monitor hydraulic automatic gauge control (HAGC) system based on fuzzy feedforward controller. This is used in the development of cold rolling mill automation system to improve the quality of cold strip. According to features/ properties of entry steel strip like its average yield stress, width of strip, and desired exit thickness, this controller realizes the compensation for the exit thickness error. The traditional methods of adjusting the roller position, can-t tolerate the variance in the entry steel strip. The proposed method uses a mathematical model of the system together with the expert knowledge to perform this adjustment while minimizing the effect of the stated problem. In order to improve the speed of the controller in rejecting disturbances introduced by entry strip thickness variations, expert knowledge is added as a feed-forward term to the HAGC system. Simulation results for the application of the proposed controller to a real cold mill show that the exit strip quality is highly improved.

Deep Learning and Virtual Environment

While computers are known to facilitate lower levels of learning, such as rote memorization of facts, measurable through electronically administered and graded multiple-choice questions, yes/no, and true/false answers, the imparting and measurement of higher-level cognitive skills is more vexing. These require more open-ended delivery and answers, and may be more problematic in an entirely virtual environment, notwithstanding the advances in technologies such as wikis, blogs, discussion boards, etc. As with the integration of all technology, merit is based more on the instructional design of the course than on the technology employed in, and of, itself. With this in mind, this study examined the perceptions of online students in an introductory Computer Information Systems course regarding the fostering of various higher-order thinking and team-building skills as a result of the activities, resources and technologies (ART) used in the course.

The Identification of Selected Dysfunctions and Paradoxes in Corporate Social Responsibility Management in Small Enterprise

The study presents a brief and synthetic discussion of selected conclusions resulting from multidimensional and in-depth empirical studies. Its theoretical part presents the assumptions referring to social responsibility management from the perspective of the specific nature of small enterprise functioning, while the empirical part presents the selected dysfunctions and paradoxes in social responsibility management referring to this group of enterprises. The paper is summarized by a short list of the resulting recommendations.

A Self-stabilizing Algorithm for Maximum Popular Matching of Strictly Ordered Preference Lists

In this paper, we consider the problem of Popular Matching of strictly ordered preference lists. A Popular Matching is not guaranteed to exist in any network. We propose an IDbased, constant space, self-stabilizing algorithm that converges to a Maximum Popular Matching an optimum solution, if one exist. We show that the algorithm stabilizes in O(n5) moves under any scheduler (daemon).

Factors Influencing Students' Self-Concept among Malaysian Students

This paper examines the students’ self-concept among 16- and 17- year- old adolescents in Malaysian secondary schools. Previous studies have shown that positive self-concept played an important role in student adjustment and academic performance during schooling. This study attempts to investigate the factors influencing students’ perceptions toward their own self-concept. A total of 1168 students participated in the survey. This study utilized the CoPs (UM) instrument to measure self-concept. Principal Component Analysis (PCA) revealed three factors: academic selfconcept, physical self-concept and social self-concept. This study confirmed that students perceived certain internal context factors, and revealed that external context factor also have an impact on their self-concept.

Two Individual Genetic Algorithm

The particular interests of this paper is to explore if the simple Genetic Algorithms (GA) starts with population of only two individuals and applying different crossover technique over these parents to produced 104 children, each one has different attributes inherited from their parents; is better than starting with population of 100 individuals; and using only one type crossover (order crossover OX). For this reason we implement GA with 52 different crossover techniques; each one produce two children; which means 104 different children will be produced and this may discover more search space, also we implement classic GA with order crossover and many experiments were done over 3 Travel Salesman Problem (TSP) to find out which method is better, and according to the results we can say that GA with Multi-crossovers is much better.

Multi-Walled Carbon Nanotubes/Polyacrylonitrile Composite as Novel Semi-Permeable Mixed Matrix Membrane in Reverse Osmosis Water Treatment Process

novel and simple method is introduced for rapid and highly efficient water treatment by reverse osmosis (RO) method using multi-walled carbon nanotubes (MWCNTs) / polyacrylonitrile (PAN) polymer as a flexible, highly efficient, reusable and semi-permeable mixed matrix membrane (MMM). For this purpose, MWCNTs were directly synthesized and on-line purified by chemical vapor deposition (CVD) process, followed by directing the MWCNT bundles towards an ultrasonic bath, in which PAN polymer was simultaneously suspended inside a solid porous silica support in water at temperature to ~70 οC. Fabrication process of MMM was finally completed by hot isostatic pressing (HIP) process. In accordance with the analytical figures of merit, the efficiency of fabricated MMM was ~97%. The rate of water treatment process was also evaluated to 6.35 L min-1. The results reveal that, the CNT-based MMM is suitable for rapid treatment of different forms of industrial, sea, drinking and well water samples.

Finite Element Prediction and Experimental Verification of the Failure Pattern of Proximal Femur using Quantitative Computed Tomography Images

This paper presents a novel method for prediction of the mechanical behavior of proximal femur using the general framework of the quantitative computed tomography (QCT)-based finite element Analysis (FEA). A systematic imaging and modeling procedure was developed for reliable correspondence between the QCT-based FEA and the in-vitro mechanical testing. A speciallydesigned holding frame was used to define and maintain a unique geometrical reference system during the analysis and testing. The QCT images were directly converted into voxel-based 3D finite element models for linear and nonlinear analyses. The equivalent plastic strain and the strain energy density measures were used to identify the critical elements and predict the failure patterns. The samples were destructively tested using a specially-designed gripping fixture (with five degrees of freedom) mounted within a universal mechanical testing machine. Very good agreements were found between the experimental and the predicted failure patterns and the associated load levels.

Suspended Matter Model on Alsat-1 Image by MLP Network and Mathematical Morphology: Prototypes by K-Means

In this article, we propose a methodology for the characterization of the suspended matter along Algiers-s bay. An approach by multi layers perceptron (MLP) with training by back propagation of the gradient optimized by the algorithm of Levenberg Marquardt (LM) is used. The accent was put on the choice of the components of the base of training where a comparative study made for four methods: Random and three alternatives of classification by K-Means. The samples are taken from suspended matter image, obtained by analytical model based on polynomial regression by taking account of in situ measurements. The mask which selects the zone of interest (water in our case) was carried out by using a multi spectral classification by ISODATA algorithm. To improve the result of classification, a cleaning of this mask was carried out using the tools of mathematical morphology. The results of this study presented in the forms of curves, tables and of images show the founded good of our methodology.

The Sublimation Energy of Metal versus Temperature and Pressure and its Influence on Blow-off Impulse

Based on the thermodynamic theory, the dependence of sublimation energy of metal on temperature and pressure is discussed, and the results indicate that the sublimation energy decreases linearly with the increase of temperature and pressure. Combined with this result, the blow-off impulse of aluminum induced by pulsed X-ray is simulated by smoothed particle hydrodynamics (SPH) method. The numerical results show that, while the change of sublimation energy with temperature and pressure is considered, the blow-off impulse of aluminum is larger than the case that the sublimation energy is assumed to be a constant.