Rapid Determination of Biochemical Oxygen Demand

Biochemical Oxygen Demand (BOD) is a measure of the oxygen used in bacteria mediated oxidation of organic substances in water and wastewater. Theoretically an infinite time is required for complete biochemical oxidation of organic matter, but the measurement is made over 5-days at 20 0C or 3-days at 27 0C test period with or without dilution. Researchers have worked to further reduce the time of measurement. The objective of this paper is to review advancement made in BOD measurement primarily to minimize the time and negate the measurement difficulties. Survey of literature review in four such techniques namely BOD-BARTTM, Biosensors, Ferricyanidemediated approach, luminous bacterial immobilized chip method. Basic principle, method of determination, data validation and their advantage and disadvantages have been incorporated of each of the methods. In the BOD-BARTTM method the time lag is calculated for the system to change from oxidative to reductive state. BIOSENSORS are the biological sensing element with a transducer which produces a signal proportional to the analyte concentration. Microbial species has its metabolic deficiencies. Co-immobilization of bacteria using sol-gel biosensor increases the range of substrate. In ferricyanidemediated approach, ferricyanide has been used as e-acceptor instead of oxygen. In Luminous bacterial cells-immobilized chip method, bacterial bioluminescence which is caused by lux genes was observed. Physiological responses is measured and correlated to BOD due to reduction or emission. There is a scope to further probe into the rapid estimation of BOD.

Neuro-Fuzzy System for Equalization Channel Distortion

In this paper the application of neuro-fuzzy system for equalization of channel distortion is considered. The structure and operation algorithm of neuro-fuzzy equalizer are described. The use of neuro-fuzzy equalizer in digital signal transmission allows to decrease training time of parameters and decrease the complexity of the network. The simulation of neuro-fuzzy equalizer is performed. The obtained result satisfies the efficiency of application of neurofuzzy technology in channel equalization.

Grey Prediction Based Handoff Algorithm

As the demand for higher capacity in a cellular environment increases, the cell size decreases. This fact makes the role of suitable handoff algorithms to reduce both number of handoffs and handoff delay more important. In this paper we show that applying the grey prediction technique for handoff leads to considerable decrease in handoff delay with using a small number of handoffs, compared with traditional hystersis based handoff algorithms.

A Neural Computing-Based Approach for the Early Detection of Hepatocellular Carcinoma

Hepatocellular carcinoma, also called hepatoma, most commonly appears in a patient with chronic viral hepatitis. In patients with a higher suspicion of HCC, such as small or subtle rising of serum enzymes levels, the best method of diagnosis involves a CT scan of the abdomen, but only at high cost. The aim of this study was to increase the ability of the physician to early detect HCC, using a probabilistic neural network-based approach, in order to save time and hospital resources.

An Investigation into the Role of Market Beta in Asset Pricing: Evidence from the Romanian Stock Market

In this paper, we apply the FM methodology to the cross-section of Romanian-listed common stocks and investigate the explanatory power of market beta on the cross-section of commons stock returns from Bucharest Stock Exchange. Various assumptions are empirically tested, such us linearity, market efficiency, the “no systematic effect of non-beta risk" hypothesis or the positive expected risk-return trade-off hypothesis. We find that the Romanian stock market shows the same properties as the other emerging markets in terms of efficiency and significance of the linear riskreturn models. Our analysis included weekly returns from January 2002 until May 2010 and the portfolio formation, estimation and testing was performed in a rolling manner using 51 observations (one year) for each stage of the analysis.

High Dynamic Range Resampling for Software Radio

The classic problem of recovering arbitrary values of a band-limited signal from its samples has an added complication in software radio applications; namely, the resampling calculations inevitably fold aliases of the analog signal back into the original bandwidth. The phenomenon is quantified by the spur-free dynamic range. We demonstrate how a novel application of the Remez (Parks- McClellan) algorithm permits optimal signal recovery and SFDR, far surpassing state-of-the-art resamplers.

The Effect of Dispersed MWCNTs Using SDBS Surfactant on Bacterial Growth

Carbon nanotubes (CNTs) are attractive because of their excellent chemical durability mechanical strength and electrical properties. Therefore there is interest in CNTs for not only electrical and mechanical application, but also biological and medical application. In this study, the dispersion power of surfactant-treated multiwalled carbon nanotubes (MWCNTs) and their effect on the antibacterial activity were examined. Surfactant was used sodium dodecyl-benzenesulfonate (SDBS). UV-vis absorbance and transmission electron microscopy(TEM) were used to characterize the dispersion of MWCNTs in the aqueous phase, showing that the surfactant molecules had been adsorbed onto the MWCNTs surface. The surfactant-treated MWCNTs exhibited antimicrobial activities to streptococcus mutans. The optical density growth curves and viable cell number determined by the plating method suggested that the antimicrobial activity of surfactant-treated MWCNTs was both concentration and treatment time-dependent.

Parallel-computing Approach for FFT Implementation on Digital Signal Processor (DSP)

An efficient parallel form in digital signal processor can improve the algorithm performance. The butterfly structure is an important role in fast Fourier transform (FFT), because its symmetry form is suitable for hardware implementation. Although it can perform a symmetric structure, the performance will be reduced under the data-dependent flow characteristic. Even though recent research which call as novel memory reference reduction methods (NMRRM) for FFT focus on reduce memory reference in twiddle factor, the data-dependent property still exists. In this paper, we propose a parallel-computing approach for FFT implementation on digital signal processor (DSP) which is based on data-independent property and still hold the property of low-memory reference. The proposed method combines final two steps in NMRRM FFT to perform a novel data-independent structure, besides it is very suitable for multi-operation-unit digital signal processor and dual-core system. We have applied the proposed method of radix-2 FFT algorithm in low memory reference on TI TMSC320C64x DSP. Experimental results show the method can reduce 33.8% clock cycles comparing with the NMRRM FFT implementation and keep the low-memory reference property.

Transimpedance Amplifier for Integrated 3D Ultrasound Biomicroscope Applications

This paper presents the design and implementation of a fully integrated transimpedance amplifier (TIA) as the analog frontend receiver for Capacitive Micromachined Ultrasound Transducers (CMUTs) for ultrasound biomicroscope imaging application. The amplifier is designed to amplify the received signals from 17.5MHz to 52.5MHz with a center frequency of 35MHz. The TIA was fabricated in GF 0.18μm 1P6M 30V high voltage process. The measurement results show that the designed amplifier can reach a transimpedance gain of 61.08dBΩ and operating frequency from 17.5MHz to 100MHz with 1VP-P output voltage under 6V power supply.

Biochemical Characteristics of Sorghum Flour Fermented and/or Supplemented with Chickpea Flour

Sorghum flour was supplemented with 15 and 30% chickpea flour. Sorghum flour and the supplement were fermented at 35 oC for 0, 8, 16, and 24 h. Changes in pH, titrable acidity, total soluble solids, protein content, in vitro protein digestibility and amino acid composition were investigated during fermentation and/or after supplementation of sorghum flour with chickpea. The pH of the fermenting material decreased sharply with a concomitant increase in the titrable acidity. The total soluble solids remained unchanged with progressive fermentation time. The protein content of sorghum cultivar was found to be 9.27 and that of chickpea was 22.47%. The protein content of sorghum cultivar after supplementation with15 and 30% chickpea was significantly (P ≤ 0.05) increased to 11.78 and 14.55%, respectively. The protein digestibility also increased after fermentation from 13.35 to 30.59 and 40.56% for the supplements, respectively. Further increment in protein content and digestibility was observed when supplemented and unsupplemented samples were fermented for different periods of time. Cooking of fermented samples was found to increase the protein content slightly and decreased digestibility for both supplements. Amino acid content of fermented and fermented and cooked supplements was determined. Supplementation was found to increase the lysine and therionine content. Cooking following fermentation decreased lysine, isoleucine, valine and sulfur containg amino acids.

A Task-Based Design Approach for Augmented Reality Systems

User interaction components of Augmented Reality (AR) systems have to be tested with users in order to find and fix usability problems as early as possible. In this paper we will report on a user-centered design approach for AR systems following the experience acquired during the design and evaluation of a software prototype for an AR-based educational platform. In this respect we will focus on the re-design of the user task based on the results from a formative usability evaluation. The basic idea of our approach is to describe task scenarios in a tabular format, to develop a task model in a task modeling environment and then to simulate the execution.

The Para-Universe of Collaborative Group Work in Today-s University Classrooms: Strategies to Help Ensure Success

Group work, projects and discussions are important components of teacher education courses whether they are face-toface, blended or exclusively online formats. This paper examines the varieties of tasks and challenges with this learning format in a face to face class teacher education class providing specific examples of both failure and success from both the student and instructor perspective. The discussion begins with a brief history of collaborative and cooperative learning, moves to an exploration of the promised benefits and then takes a look at some of the challenges which can arise specifically from the use of new technologies. The discussion concludes with guidelines and specific suggestions.

Response of Wax Apple Cultivars by Applied GA3 and 2,4-D on Fruit Growth and Fruit Quality

The experiment was performed to evaluate the effect of GA3, 2,4-D on fruit growth and fruit quality of wax apple. The experiment consisted of Red A, Monulla, Atu, Red B cultivars. GA3 and 2,4-D were applied at the small bud and petal fall stage. Physiological, biochemical characters of fruit were recoded. The result showed application of GA3, 2,4-D greatly response in increasing fruit set for all treatment as compared to control. Fruit weight, fruit size were increased at 10 ppm 2,4-D in ‘Red A’, ‘Red B’, however it was also enhancing at 10 ppm GA3 in ‘Monulla’, ‘Atu’. For ‘Monulla’, ‘Atu’ fruit crack reduced by 10 ppm 2,4-D application, but ‘Red B’, ‘Red A’ gave least fruit crack at 10 and 30 ppm GA3, respectively. ‘Monulla’, ‘Atu’ and ‘Red B’ resulted in response well to 10 ppm GA3 on improving TSS, whereas application of 30 ppm GA3 greatly enhancing TSS in ‘Red A’. For ‘Atu’ titratable acidity markedly reduced by 10 ppm GA3 application, but spraying with 30 ppm GA3 greatly response in reducing titratable acidity in ‘Red A’, ‘Red B’ and ‘Monulla’. It was concluded that GA3, 2,4-D can be an effective tool to enhancing fruit set, fruit growth as well as improving fruit quality of wax apple.

A Utilitarian Approach to Modeling Information Flows in Social Networks

We propose a multi-agent based utilitarian approach to model and understand information flows in social networks that lead to Pareto optimal informational exchanges. We model the individual expected utility function of the agents to reflect the net value of information received. We show how this model, adapted from a theorem by Karl Borch dealing with an actuarial Risk Exchange concept in the Insurance industry, can be used for social network analysis. We develop a utilitarian framework that allows us to interpret Pareto optimal exchanges of value as potential information flows, while achieving a maximization of a sum of expected utilities of information of the group of agents. We examine some interesting conditions on the utility function under which the flows are optimal. We illustrate the promise of this new approach to attach economic value to information in networks with a synthetic example.

Heat Treatment and Rest-Inserted Exercise Enhances EMG Activity of the Lower Limb

Prolonged immobilization leads to significant weakness and atrophy of the skeletal muscle and can also impair the recovery of muscle strength following injury. Therefore, it is important to minimize the period under immobilization and accelerate the return to normal activity. This study examined the effects of heat treatment and rest-inserted exercise on the muscle activity of the lower limb during knee flexion/extension. Twelve healthy subjects were assigned to 4 groups that included: (1) heat treatment + rest-inserted exercise; (2) heat + continuous exercise; (3) no heat + rest-inserted exercise; and (4) no heat + continuous exercise. Heat treatment was applied for 15 mins prior to exercise. Continuous exercise groups performed knee flexion/extension at 0.5 Hz for 300 cycles without rest whereas rest-inserted exercise groups performed the same exercise but with 2 mins rest inserted every 60 cycles of continuous exercise. Changes in the rectus femoris and hamstring muscle activities were assessed at 0, 1, and 2 weeks of treatment by measuring the electromyography signals of isokinetic maximum voluntary contraction. Significant increases in both the rectus femoris and hamstring muscles were observed after 2 weeks of treatment only when both heat treatment and rest-inserted exercise were performed. These results suggest that combination of various treatment techniques, such as heat treatment and rest-inserted exercise, may expedite the recovery of muscle strength following immobilization.

Fast 3D Collision Detection Algorithm using 2D Intersection Area

There are many researches to detect collision between real object and virtual object in 3D space. In general, these techniques are need to huge computing power. So, many research and study are constructed by using cloud computing, network computing, and distribute computing. As a reason of these, this paper proposed a novel fast 3D collision detection algorithm between real and virtual object using 2D intersection area. Proposed algorithm uses 4 multiple cameras and coarse-and-fine method to improve accuracy and speed performance of collision detection. In the coarse step, this system examines the intersection area between real and virtual object silhouettes from all camera views. The result of this step is the index of virtual sensors which has a possibility of collision in 3D space. To decide collision accurately, at the fine step, this system examines the collision detection in 3D space by using the visual hull algorithm. Performance of the algorithm is verified by comparing with existing algorithm. We believe proposed algorithm help many other research, study and application fields such as HCI, augmented reality, intelligent space, and so on.

T-DOF PID Controller Design using Characteristic Ratio Assignment Method for Quadruple Tank Process

A control system design with Characteristic Ratio Assignment (CRA) is proven that effective for SISO control design. But the control system design for MIMO via CRA is not concrete procedure. In this paper presents the control system design method for quadruple-tank process via CRA. By using the decentralized method for both minimum phase and non-minimum phase are made. The results from PI and PID controller design via CRA can be illustrated the validity of our approach by MATLAB.

Developing Marketing Strategy in Nonmetallic Mineral Industry at the Business Level

This study extends research on the relationship between marketing strategy and market segmentation by investigating on market segments in the cement industry. Competitive strength and rivals distance from the factory were used as business environment. A three segment (positive, neutral or indifferent and zero zones) were identified as strategic segments. For each segment a marketing strategy (aggressive, defensive and decline) were developed. This study employed data from cement industry to fulfill two objectives, the first is to give a framework to the segmentation of cement industry and the second is developing marketing strategy with varying competitive strength. Fifty six questionnaires containing close-and open-ended questions were collected and analyzed. Results supported the theory that segments tend to be more aggressive than defensive when competitive strength increases. It is concluded that high strength segments follow total market coverage, concentric diversification and frontal attack to their competitors. With decreased competitive strength, Business tends to follow multi-market strategy, product modification/improvement and flank attack to direct competitors for this kind of segments. Segments with weak competitive strength followed focus strategy and decline strategy.

Satellite Sensing for Evaluation of an Irrigation System in Cotton - Wheat Zone

Efficient utilization of existing water is a pressing need for Pakistan. Due to rising population, reduction in present storage capacity and poor delivery efficiency of 30 to 40% from canal. A study to evaluate an irrigation system in the cotton-wheat zone of Pakistan, after the watercourse lining was conducted. The study is made on the basis of cropping pattern and salinity to evaluate the system. This study employed an index-based approach of using Geographic information system with field data. The satellite images of different years were use to examine the effective area. Several combinations of the ratio of signals received in different spectral bands were used for development of this index. Near Infrared and Thermal IR spectral bands proved to be most effective as this combination helped easy detection of salt affected area and cropping pattern of the study area. Result showed that 9.97% area under salinity in 1992, 9.17% in 2000 and it left 2.29% in year 2005. Similarly in 1992, 45% area is under vegetation it improves to 56% and 65% in 2000 and 2005 respectively. On the basis of these results evaluation is done 30% performance is increase after the watercourse improvement.

A Simulation Study of Bullwhip Effect in a Closed-Loop Supply Chain with Fuzzy Demand and Fuzzy Collection Rate under Possibility Constraints

Along with forward supply chain organization needs to consider the impact of reverse logistics due to its economic advantage, social awareness and strict legislations. In this paper, we develop a system dynamics framework for a closed-loop supply chain with fuzzy demand and fuzzy collection rate by incorporating product exchange policy in forward channel and various recovery options in reverse channel. The uncertainty issues associated with acquisition and collection of used product have been quantified using possibility measures. In the simulation study, we analyze order variation at both retailer and distributor level and compare bullwhip effects of different logistics participants over time between the traditional forward supply chain and the closed-loop supply chain. Our results suggest that the integration of reverse logistics can reduce order variation and bullwhip effect of a closed-loop system. Finally, sensitivity analysis is performed to examine the impact of various parameters on recovery process and bullwhip effect.