A Black-Box Approach in Modeling Valve Stiction

Several valve stiction models have been proposed in the literature to help understand and study the behavior of sticky valves. In this paper, an alternative black-box modeling approach based on Neural Network (NN) is presented. It is shown that with proper network type and optimum model structures, the performance of the developed NN stiction model is comparable to other established method. The resulting NN model is also tested for its robustness against the uncertainty in the stiction parameter values. Predictive mode operation also shows excellent performance of the proposed model for multi-steps ahead prediction.

A Study of Under Actuator Dynamic System by Comparing between Minimum Energy and Minimum Jerk Problems

This paper deals with under actuator dynamic systems such as spring-mass-damper system when the number of control variable is less than the number of state variable. In order to apply optimal control, the controllability must be checked. There are many objective functions to be selected as the goal of the optimal control such as minimum energy, maximum energy and minimum jerk. As the objective function is the first priority, if one like to have the second goal to be applied; however, it could not fit in the objective function format and also avoiding the vector cost for the objective, this paper will illustrate the problem of under actuator dynamic systems with the easiest to deal with comparing between minimum energy and minimum jerk.

Universal Current-Mode OTA-C KHN Biquad

A universal current-mode biquad is described which represents an economical variant of well-known KHN (Kerwin, Huelsman, Newcomb) voltage-mode filter. The circuit consists of two multiple-output OTAs and of two grounded capacitors. Utilizing simple splitter of the input current and a pair of jumpers, all the basic 2nd-order transfer functions can be implemented. The principle is verified by Spice simulation on the level of a CMOS structure of OTAs.

Biosignal Measurement System Based On Ultra-Wide Band Human Body Communication

A wrist-band type biosignal measurement system and its data transfer through human body communication (HBC) were investigated. An HBC method based on pulses of ultra-wide band instead of using frequency or amplitude modulations was studied and implemented since the system became very compact and it was more suited for personal or mobile health monitoring. Our system measured photo-plethysmogram (PPG) and measured PPG signals were transmitted through a finger to a monitoring PC system. The device was compact and low-power consuming. HBC communication has very strongsecurity measures since it does not use wireless network.Furthermore, biosignal monitoring system becomes handy because it does not need to have wire connections.

3D Network-on-Chip with on-Chip DRAM: An Empirical Analysis for Future Chip Multiprocessor

With the increasing number of on-chip components and the critical requirement for processing power, Chip Multiprocessor (CMP) has gained wide acceptance in both academia and industry during the last decade. However, the conventional bus-based onchip communication schemes suffer from very high communication delay and low scalability in large scale systems. Network-on-Chip (NoC) has been proposed to solve the bottleneck of parallel onchip communications by applying different network topologies which separate the communication phase from the computation phase. Observing that the memory bandwidth of the communication between on-chip components and off-chip memory has become a critical problem even in NoC based systems, in this paper, we propose a novel 3D NoC with on-chip Dynamic Random Access Memory (DRAM) in which different layers are dedicated to different functionalities such as processors, cache or memory. Results show that, by using our proposed architecture, average link utilization has reduced by 10.25% for SPLASH-2 workloads. Our proposed design costs 1.12% less execution cycles than the traditional design on average.

A Robust Approach to the Load Frequency Control Problem with Speed Regulation Uncertainty

The load frequency control problem of power systems has attracted a lot of attention from engineers and researchers over the years. Increasing and quickly changing load demand, coupled with the inclusion of more generators with high variability (solar and wind power generators) on the network are making power systems more difficult to regulate. Frequency changes are unavoidable but regulatory authorities require that these changes remain within a certain bound. Engineers are required to perform the tricky task of adjusting the control system to maintain the frequency within tolerated bounds. It is well known that to minimize frequency variations, a large proportional feedback gain (speed regulation constant) is desirable. However, this improvement in performance using proportional feedback comes about at the expense of a reduced stability margin and also allows some steady-state error. A conventional PI controller is then included as a secondary control loop to drive the steadystate error to zero. In this paper, we propose a robust controller to replace the conventional PI controller which guarantees performance and stability of the power system over the range of variation of the speed regulation constant. Simulation results are shown to validate the superiority of the proposed approach on a simple single-area power system model.

Optimal Water Conservation in a Mechanical Cooling Tower Operations

Water recycling represents an important challenge for many countries, in particular in countries where this natural resource is rare. On the other hand, in many operations, water is used as a cooling medium, as a high proportion of water consumed in industry is used for cooling purposes. Generally this water is rejected directly to the nature. This reject will cause serious environment damages as well as an important waste of this precious element.. On way to solve these problems is to reuse and recycle this warm water, through the use of natural cooling medium, such as air in a heat exchanger unit, known as a cooling tower. A poor performance, design or reliability of cooling towers will result in lower flow rate of cooling water an increase in the evaporation of water, an hence losses of water and energy. This paper which presents an experimental investigate of thermal and hydraulic performances of a mechanical cooling tower, enables to show that the water evaporation rate, Mev, increases with an increase in the air and water flow rates, as well as inlet water temperature and for fixed air flow rates, the pressure drop (ΔPw/Z) increases with increasing , L, due to the hydrodynamic behavior of the air/water flow.

Automation System for Optimization of Electrical and Thermal Energy Production in Cogenerative Gas Power Plants

The system is made with main distributed components: First Level: Industrial Computers placed in Control Room (monitors thermal and electrical processes based on the data provided by the second level); Second Level: PLCs which collects data from process and transmits information on the first level; also takes commands from this level which are further, passed to execution elements from third level; Third Level: field elements consisting in 3 categories: data collecting elements; data transfer elements from the third level to the second; execution elements which take commands from the second level PLCs and executes them after which transmits the confirmation of execution to them. The purpose of the automatic functioning is the optimization of the co-generative electrical energy commissioning in the national energy system and the commissioning of thermal energy to the consumers. The integrated system treats the functioning of all the equipments and devices as a whole: Gas Turbine Units (GTU); MT 20kV Medium Voltage Station (MVS); 0,4 kV Low Voltage Station (LVS); Main Hot Water Boilers (MHW); Auxiliary Hot Water Boilers (AHW); Gas Compressor Unit (GCU); Thermal Agent Circulation Pumping Unit (TPU); Water Treating Station (WTS).

A Noble Flow Rate Control based on Leaky Bucket Method for Multi-Media OBS Networks

Optical burst switching (OBS) has been proposed to realize the next generation Internet based on the wavelength division multiplexing (WDM) network technologies. In the OBS, the burst contention is one of the major problems. The deflection routing has been designed for resolving the problem. However, the deflection routing becomes difficult to prevent from the burst contentions as the network load becomes high. In this paper, we introduce a flow rate control methods to reduce burst contentions. We propose new flow rate control methods based on the leaky bucket algorithm and deflection routing, i.e. separate leaky bucket deflection method, and dynamic leaky bucket deflection method. In proposed methods, edge nodes which generate data bursts carry out the flow rate control protocols. In order to verify the effectiveness of the flow rate control in OBS networks, we show that the proposed methods improve the network utilization and reduce the burst loss probability through computer simulations.

Analysis of a Novel Strained Silicon RF LDMOS

In this paper we propose a novel RF LDMOS structure which employs a thin strained silicon layer at the top of the channel and the N-Drift region. The strain is induced by a relaxed Si0.8 Ge0.2 layer which is on top of a compositionally graded SiGe buffer. We explain the underlying physics of the device and compare the proposed device with a conventional LDMOS in terms of energy band diagram and carrier concentration. Numerical simulations of the proposed strained silicon laterally diffused MOS using a 2 dimensional device simulator indicate improvements in saturation and linear transconductance, current drivability, cut off frequency and on resistance. These improvements are however accompanied with a suppression in the break down voltage.

Disinfestation of Wheat Using Liquid Nitrogen Aeration

A study was undertaken to investigate the effect of liquid nitrogen aeration on mortalities of adult Cryptolestes furrugineus, rusty grain beetles, in a prototype cardboard grain bin equipped with an aeration system. The grain bin was filled with Hard Red Spring wheat and liquid nitrogen was introduced from the bottom of the bin. The survival of both cold acclimated and unacclimated C. furrugineus was tested. The study reveals that cold acclimated insects had higher survival than unacclimated insects under similar cooling conditions. In most cases, mortalities of as high as 100% were achieved at the bottom 100 cm of the grain bin for unacclimated insects for most of the trials. Insect survival increased as the distance from the bottom of the grain bin increased. There was no adverse effect of liquid nitrogen aeration on wheat germination.

The Low-carbon Transition Exploration of China's Traditional Manufacturing Industries

Aiming at the problems existing in low-carbon technology of Chinese manufacturing industries, such as irrational energy structure, lack of technological innovation, financial constraints, this paper puts forward the suggestion that the leading role of the government is combined with the roles of enterprises and market. That is, through increasing the governmental funding the adjustment of the industrial structures and enhancement of the legal supervision are supported. Technological innovation is accelerated by the enterprises, and the carbon trading will be promoted so as to trigger the low-carbon revolution in Chinese manufacturing field.

Influence of Metakaolin on the Performance of Mortars and Concretes

The use of additions in cement in manufacturing, mortar and concrete offers economic and ecological advantages. Cements with additions such as limestone, slag and natural pouzzolana are produced in cement factories in Algeria. Several studies analyzed the effect of these additions on the physical and mechanical properties as well as the durability of concrete. However, few studies were conducted on the effect of local metakaolin on mechanical properties and durability of concrete. The main purpose of this paper is to analyze the performance of mortar and concrete with local metakaolin. The preparation of the metakaolin was carried out by calcination of kaolin at a temperature of 850 °C for a period of 3 hours. The experimental results have shown that the rates of substitutions of 10 and 15% metakaolin increases the compressive strength and flexural strength at both early age and long term. The durability and the permeability were also improved by reducing the coefficient of sorptivity.

Development of a Portable Welding Robot with EtherCAT Interface

This paper presents a portable robot that is to use for welding process in shipbuilding yard. It has six degree of freedom and 3kg payload capability. Its weight is 21.5kg so that human workers can carry it to the work place. Its body mainly made of magnesium alloy and aluminum alloy for few parts that require high strength. Since the distance between robot and controller should be 50m at most, the robot controller controls the robot through EtherCAT. RTX and KPA are used for real time EtherCAT control on Windows XP. The performance of the developed robot was satisfactory, in welding of U type cell in shipbuilding yard.

Developing a Statistical Model for Electromagnetic Environment for Mobile Wireless Networks

The analysis of electromagnetic environment using deterministic mathematical models is characterized by the impossibility of analyzing a large number of interacting network stations with a priori unknown parameters, and this is characteristic, for example, of mobile wireless communication networks. One of the tasks of the tools used in designing, planning and optimization of mobile wireless network is to carry out simulation of electromagnetic environment based on mathematical modelling methods, including computer experiment, and to estimate its effect on radio communication devices. This paper proposes the development of a statistical model of electromagnetic environment of a mobile wireless communication network by describing the parameters and factors affecting it including the propagation channel and their statistical models.

Speech Activated Automation

This article presents a simple way to perform programmed voice commands for the interface with commercial Digital and Analogue Input/Output PCI cards, used in Robotics and Automation applications. Robots and Automation equipment can "listen" to voice commands and perform several different tasks, approaching to the human behavior, and improving the human- machine interfaces for the Automation Industry. Since most PCI Digital and Analogue Input/Output cards are sold with several DLLs included (for use with different programming languages), it is possible to add speech recognition capability, using a standard speech recognition engine, compatible with the programming languages used. It was created in this work a Visual Basic 6 (the world's most popular language) application, that listens to several voice commands, and is capable to communicate directly with several standard 128 Digital I/O PCI Cards, used to control complete Automation Systems, with up to (number of boards used) x 128 Sensors and/or Actuators.

Development of a Sliding-tearing Mode Fracture Mechanical Tool for Laminated Composite Materials

This work presents the mixed-mode II/III prestressed split-cantilever beam specimen for the fracture testing of composite materials. In accordance with the concept of prestressed composite beams one of the two fracture modes is provided by the prestressed state of the specimen, and the other one is increased up to fracture initiation by using a testing machine. The novel beam-like specimen is able to provide any combination of the mode-II and mode-III energy release rates. A simple closed-form solution is developed using beam theory as a data reduction scheme and for the calculation of the energy release rates in the new configuration. The applicability and the limitations of the novel fracture mechanical test are demonstrated using unidirectional glass/polyester composite specimens. If only crack propagation onset is involved then the mixed-mode beam specimen can be used to obtain the fracture criterion of transparent composite materials in the GII - GIII plane in a relatively simple way.

Organisational Learning as Perceived and Expected by Management and Non Management Staff

The study applied a combination of organisational learning models (Senge, 1994: Pedler, Burgoyne and Boydell, 1991) and later adopted fifteen organisational learning principles with one of the biggest energy providers in South East Asia. The purposes of the current study were to: a) investigate the company-s practices on fifteen organisational learning principles; b) explore the perceptions and expectations of its employees in relations to the principles; and c) compare the perceptions and expectations between management and non-management staff toward the fifteen factors. One hundred and ten employees responded on a designed questionnaire and the results indicated that the company was practicing activities that associated with organisational learning principles. Also, according to the T-test results, significant differences between management and non-management respondents were found. Research implications are also provided.

Usability Evaluation Framework for Computer Vision Based Interfaces

Human computer interaction has progressed considerably from the traditional modes of interaction. Vision based interfaces are a revolutionary technology, allowing interaction through human actions, gestures. Researchers have developed numerous accurate techniques, however, with an exception to few these techniques are not evaluated using standard HCI techniques. In this paper we present a comprehensive framework to address this issue. Our evaluation of a computer vision application shows that in addition to the accuracy, it is vital to address human factors

Effect of Leadership Approach to Organizational Commitment: A Study in Transportation Sector

Employees commitments of vision and mission of organization is effected due to manager’s executes by approach of leadership The leaders who have attributions like vision, confidence and correctitude, sharing and participation, creativeness, progressive learning –improvement and responsibility are effective to increase organizational commitment if they are sensitive to expectation and requirement of employees in an organization. Studies about organizational commitment appear results that employees who have strong organizational commitment have the most contribution. In this study, “Leadership” and “Organizational Commitment” conduct surveys to 31 employees of Ahmet Özdemir Nak. Tic. San. A.Ş. which has operations in road and railway transportation sector. It is analyzed the effects of leadership approach to organizational commitment deals with result of survey.