Development of a Sliding-tearing Mode Fracture Mechanical Tool for Laminated Composite Materials

This work presents the mixed-mode II/III prestressed split-cantilever beam specimen for the fracture testing of composite materials. In accordance with the concept of prestressed composite beams one of the two fracture modes is provided by the prestressed state of the specimen, and the other one is increased up to fracture initiation by using a testing machine. The novel beam-like specimen is able to provide any combination of the mode-II and mode-III energy release rates. A simple closed-form solution is developed using beam theory as a data reduction scheme and for the calculation of the energy release rates in the new configuration. The applicability and the limitations of the novel fracture mechanical test are demonstrated using unidirectional glass/polyester composite specimens. If only crack propagation onset is involved then the mixed-mode beam specimen can be used to obtain the fracture criterion of transparent composite materials in the GII - GIII plane in a relatively simple way.





References:
[1] T. L. Anderson, Fracture Mechanics - Fundamentals and Applications,
third edition ed. Boca Raton, London, New York, Singapore: CRC
Press, Taylor & Francis Group, 2005.
[2] A. J. Brunner and P. Fl¨ueler, "Prospects in fracture mechanics of
"engineering" laminates," Engineering Fracture Mechanics, vol. 72, pp.
899-908, 2005.
[3] A. J. Brunner, B. R. K. Blackman, and P. Davies, "A status report
on delamination resistance testing of polymer-matrix," Engineering
Fracture Mechanics, vol. 75, pp. 2779-2794, 2008.
[4] ASTM D6671 / D6671M - 06 Standard Test Method for Mixed Mode
I-Mode II Interlaminar Fracture Toughness of Unidirectional, 2006.
[5] Determination of the mixed-mode I/II delamination resistance of unidirectional
fibre-reinforced polymer laminates using the asymmetric
double cantilever beam specimen (ADCB), version 00-05-03 ed., European
Structural Integrity Society (ESIS), Polymers and Composites
Task Group, 2000.
[6] G. Becht and J. W. G. Jr., "Design and analysis of the crack rail shear
specimen for mode III interlaminar fracture," Composites Science and
Technology, vol. 31, pp. 143-157, 1988.
[7] S. L. Donaldson, "Mode III intelaminar fracture characterization of
composite materials," Composites Science and Technology, vol. 32, pp.
225-249, 1988.
[8] S. M. Lee, "An edge crack torsion method for mode III delamination
fracture testing," Journal of Composite Technology & Research, vol. 15,
no. 3, pp. 193-201, 1993.
[9] W. C. Liao and C. T. Sun, "The determination of mode III fracture
toughness in thick composite laminates," Composites Science and Technology,
vol. 56, pp. 489-499, 1996.
[10] H. Suemasu, "An experimental method to measure the mode-III interlaminar
fracture toughness of composite materials," Composites Science
and Technology, vol. 59, pp. 1015-1021, 1999.
[11] J. G. Ratcliffe, "Characterization of the edge crack torsion (ECT) test
for mode III fracture toughness measurement of laminated composites,"
NASA, Technical Memorandum 213269, 2004.
[12] D. Pennas, W. J. Cantwell, and P. Compston, "The influence of strain rate
on the mode III interlaminar fracture of composite materials," Journal
of Composite Materials, vol. 41, pp. 2395-2614, 2007.
[13] A. B. de Morais, A. B. Pereira, M. F. S. F. de Moura, and A. G.
Magalh╦ÿaes, "Mode III interlaminar fracture of carbon/epoxy laminates
using the edge crack torsion (ECT) test," Composites Science and
Technology, vol. 69, pp. 670-676, 2009.
[14] P. Robinson and Q. D. Song, "The development of an improved mode III
delamination test for composites," Composites Science and Technology,
vol. 52, pp. 217-233, 1994.
[15] D. Cicci, F. Sharif, and M. T. Kortschot, "Data reduction for the split
cantilever beam mode III delamination test," in Proceedings, ACCM 10,
Whistler, British Columbia, Canada, 14-18 August 1995, pp. 1-8.
[16] F. Sharif, M. T. Kortschot, and R. H. Martin, "Mode III delamination
using a split cantilever beam," in Composite Materials: Fatigue and
Fracture - Fifth Volume, R. H. Martin, Ed., vol. ASTM STP 1230.
Philadelphia: ASTM, 1995, pp. 85-99.
[17] K. Trakas and M. T. Kortschot, "The relationship between critical
strain energy release rate and fracture mode in multidirectional carbonfiber/
epoxy laminates," in Composite Materials: Fatigue and Fracture -
Sixth Volume, A. Armanios, Ed., vol. ASTM STP 1285. ASTM, 1997,
pp. 283-304.
[18] V. Rizov, Y. Shindo, K. H. K, and F. Narita, "Mode III interlaminar
fracture behaviour of glass fiber reinforced polymer woven laminates at
293 to 4 k," Applied Composite Materials, vol. 13, pp. 287-304, 2006.
[19] M. Farshad and P. Fl¨ueler , "Investigation of mode III fracture toughness
using an anti-clastic plate bending method," Engineering Fracture
Mechanics, vol. 60, pp. 5-6, 1998.
[20] H. Yoshihara, "Examination of the 4-ENF test for measuring the mode
III R-curve of wood," Engineering Fracture Mechanics, vol. 73, pp.
42-63, 2006.
[21] A. B. de Morais and A. B. Pereira, "Mode III interlaminar fracture of
carbon/epoxy laminates using a four-point bending plate test," Composites
Part A - Applied Science and Manufacturing, vol. 40, no. 11, pp.
1741-1746, 2009.
[22] A. Szekr'enyes, "Improved analysis of the modified split-cantilever beam
for mode-III fracture," International Journal of Mechanical Sciences,
vol. 51, pp. 682-693, 2009.
[23] A. B. Pereira, A. B. de Morais, and M. F. S. F. de Moura, "Design
and analysis of a new six-point edge crack torsion (6ECT) specimen
for mode III interlaminar fracture characterisation," Composites Part A
- Applied Science and Manufacturing, vol. 42, no. 2, pp. 131-139, 2011.
[24] A. Szekr'enyes, "Delamination fracture analysis in the GII-GIII plane
using prestressed transparent composite beams," International Journal
of Solids and Structures, vol. 44, pp. 3359-3378, 2007.
[25] A. B. Pereira and A. B. de Morais, "Mixed mode I+III interlaminar
fracture of carbon/epoxy laminates," Composites Part A - Applied
Science and Manufacturing, vol. 40, no. 4, pp. 518-523, 2009.
[26] A. B. de Morais and A. B. Pereira, "Mixed mode II+III interlaminar
fracture of carbon/epoxy laminates," Composites Part A - Applied
Science and Manufacturing, vol. 68, no. 9, pp. 2022-2027, 2008.
[27] A. Szekr'enyes, "Interlaminar fracture analysis in the GI-GIII plane
using prestressed transparent composite beams," Composites Part A -
Applied Science and Manufacturing, vol. 40, no. 10, pp. 1621-1631,
2009.
[28] H. Suemasu, A. Kondo, K. Gozu, and Y. Aoki, "Novel test method
for mixed mode II and III interlaminar fracture toughness," Advanced
Composite Materials, vol. 19, pp. 349-361, 2010.
[29] R. M. Marat-Mendes and M. M. Freitas, "Failure criteria for mixed mode
delamination in glass fibre epoxy composites," Composite Structures,
vol. 92, no. 9, pp. 2292-2298, 2010, fifteenth International Conference
on Composite Structures.
[30] A. Szekr'enyes, "Prestressed fracture specimen for delamination testing
of composites," International Journal of Fracture, vol. 139, pp. 213-237,
2006.
[31] M. Kenane and S. Benmedakhene, "Fracture and fatigue study of
unidirectional glass/epoxy laminate under different mode of loading,"
Fatigue and Fracture of Engineering Materials & Structures, vol. 33,
no. 5, pp. 284-293, 2010.
[32] A. Szekr'enyes, "Improved analysis of unidirectional composite delamination
specimens," Mechanics of Materials, vol. 39, pp. 953-974, 2007.
[33] A. Szekr'enyes, "Prestressed composite specimen for mixed-mode I/II
cracking in laminated materials," Journal of Reinforced Plastics and
Composites, vol. 29, pp. 3309-3321, 2010.
[34] N. K. Naik, K. S. Reddy, S. Meduri, N. B. Raju, P. D. Prasad,
S. N. M. Azad, P. A. Ogde, and B. C. K. Reddy, "Interlaminar fracture
characterization for plain weave fabric composites," Journal of Materials
Science, vol. 37, pp. 2983-2987, 2002.
[35] S. F. Hwang and C. L. Hu, "Tearing mode interlaminar fracture
toughness of composite materials," Polymer Composites, vol. 22, pp.
57-64, 2001.
[36] N. Blanco, E. K. Gamstedt, J. Costa, and D. Trias, "Analysis of the
mixed-mode end load split delamination test," Composite Structures,
vol. 76, pp. 14-20, 2006.
[37] H. Yoshihara and A. Satoh, "Shear and crack tip deformation correction
for the double cantilever beam and three-point end-notched flexure
specimens for mode i and mode ii fracture toughness measurement of
wood," Engineering Fracture Mechanics, vol. 76, pp. 335-346, 2009.
[38] J. R. Reeder, "An evaluation of mixed-mode delamination failure criteria,"
NASA, Technical Memorandum 104210, 1992.
[39] F. Garvan, The Maple Book. Boca Raton, London, New York,
Washington D.C.: Chapman & Hall/CRC, 2002.