Mobile Multicast Support using Old Foreign Agent (MMOFA)

IP multicasting is a key technology for many existing and emerging applications on the Internet. Furthermore, with increasing popularity of wireless devices and mobile equipment, it is necessary to determine the best way to provide this service in a wireless environment. IETF Mobile IP, that provides mobility for hosts in IP networks, proposes two approaches for mobile multicasting, namely, remote subscription (MIP-RS) and bi-directional tunneling (MIP-BT). In MIP-RS, a mobile host re-subscribes to the multicast groups each time it moves to a new foreign network. MIP-RS suffers from serious packet losses while mobile host handoff occurs. In MIP-BT, mobile hosts send and receive multicast packets by way of their home agents (HAs), using Mobile IP tunnels. Therefore, it suffers from inefficient routing and wastage of system resources. In this paper, we propose a protocol called Mobile Multicast support using Old Foreign Agent (MMOFA) for Mobile Hosts. MMOFA is derived from MIP-RS and with the assistance of Mobile host's Old foreign agent, routes the missing datagrams due to handoff in adjacent network via tunneling. Also, we studied the performance of the proposed protocol by simulation under ns-2.27. The results demonstrate that MMOFA has optimal routing efficiency and low delivery cost, as compared to other approaches.

A Critical Survey of Reusability Aspects for Component-Based Systems

The last decade has shown that object-oriented concept by itself is not that powerful to cope with the rapidly changing requirements of ongoing applications. Component-based systems achieve flexibility by clearly separating the stable parts of systems (i.e. the components) from the specification of their composition. In order to realize the reuse of components effectively in CBSD, it is required to measure the reusability of components. However, due to the black-box nature of components where the source code of these components are not available, it is difficult to use conventional metrics in Component-based Development as these metrics require analysis of source codes. In this paper, we survey few existing component-based reusability metrics. These metrics give a border view of component-s understandability, adaptability, and portability. It also describes the analysis, in terms of quality factors related to reusability, contained in an approach that aids significantly in assessing existing components for reusability.

MDA of Hexagonal Honeycomb Plates used for Space Applications

The purpose of this paper is to perform a multidisciplinary design and analysis (MDA) of honeycomb panels used in the satellites structural design. All the analysis is based on clamped-free boundary conditions. In the present work, detailed finite element models for honeycomb panels are developed and analysed. Experimental tests were carried out on a honeycomb specimen of which the goal is to compare the previous modal analysis made by the finite element method as well as the existing equivalent approaches. The obtained results show a good agreement between the finite element analysis, equivalent and tests results; the difference in the first two frequencies is less than 4% and less than 10% for the third frequency. The results of the equivalent model presented in this analysis are obtained with a good accuracy. Moreover, investigations carried out in this research relate to the honeycomb plate modal analysis under several aspects including the structural geometrical variation by studying the various influences of the dimension parameters on the modal frequency, the variation of core and skin material of the honeycomb. The various results obtained in this paper are promising and show that the geometry parameters and the type of material have an effect on the value of the honeycomb plate modal frequency.

Automatic Segmentation of Dermoscopy Images Using Histogram Thresholding on Optimal Color Channels

Automatic segmentation of skin lesions is the first step towards development of a computer-aided diagnosis of melanoma. Although numerous segmentation methods have been developed, few studies have focused on determining the most discriminative and effective color space for melanoma application. This paper proposes a novel automatic segmentation algorithm using color space analysis and clustering-based histogram thresholding, which is able to determine the optimal color channel for segmentation of skin lesions. To demonstrate the validity of the algorithm, it is tested on a set of 30 high resolution dermoscopy images and a comprehensive evaluation of the results is provided, where borders manually drawn by four dermatologists, are compared to automated borders detected by the proposed algorithm. The evaluation is carried out by applying three previously used metrics of accuracy, sensitivity, and specificity and a new metric of similarity. Through ROC analysis and ranking the metrics, it is shown that the best results are obtained with the X and XoYoR color channels which results in an accuracy of approximately 97%. The proposed method is also compared with two state-ofthe- art skin lesion segmentation methods, which demonstrates the effectiveness and superiority of the proposed segmentation method.

A Novel Machining Signal Filtering Technique: Z-notch Filter

A filter is used to remove undesirable frequency information from a dynamic signal. This paper shows that the Znotch filter filtering technique can be applied to remove the noise nuisance from a machining signal. In machining, the noise components were identified from the sound produced by the operation of machine components itself such as hydraulic system, motor, machine environment and etc. By correlating the noise components with the measured machining signal, the interested components of the measured machining signal which was less interfered by the noise, can be extracted. Thus, the filtered signal is more reliable to be analysed in terms of noise content compared to the unfiltered signal. Significantly, the I-kaz method i.e. comprises of three dimensional graphical representation and I-kaz coefficient, Z∞ could differentiate between the filtered and the unfiltered signal. The bigger space of scattering and the higher value of Z∞ demonstrated that the signal was highly interrupted by noise. This method can be utilised as a proactive tool in evaluating the noise content in a signal. The evaluation of noise content is very important as well as the elimination especially for machining operation fault diagnosis purpose. The Z-notch filtering technique was reliable in extracting noise component from the measured machining signal with high efficiency. Even though the measured signal was exposed to high noise disruption, the signal generated from the interaction between cutting tool and work piece still can be acquired. Therefore, the interruption of noise that could change the original signal feature and consequently can deteriorate the useful sensory information can be eliminated.

Human Verification in a Video Surveillance System Using Statistical Features

A human verification system is presented in this paper. The system consists of several steps: background subtraction, thresholding, line connection, region growing, morphlogy, star skelatonization, feature extraction, feature matching, and decision making. The proposed system combines an advantage of star skeletonization and simple statistic features. A correlation matching and probability voting have been used for verification, followed by a logical operation in a decision making stage. The proposed system uses small number of features and the system reliability is convincing.

A New Time Dependent, High Temperature Analytical Model for the Single-electron Box in Digital Applications

Several models have been introduced so far for single electron box, SEB, which all of them were restricted to DC response and or low temperature limit. In this paper we introduce a new time dependent, high temperature analytical model for SEB for the first time. DC behavior of the introduced model will be verified against SIMON software and its time behavior will be verified against a newly published paper regarding step response of SEB.

Identification of Wideband Sources Using Higher Order Statistics in Noisy Environment

This paper deals with the localization of the wideband sources. We develop a new approach for estimating the wide band sources parameters. This method is based on the high order statistics of the recorded data in order to eliminate the Gaussian components from the signals received on the various hydrophones.In fact the noise of sea bottom is regarded as being Gaussian. Thanks to the coherent signal subspace algorithm based on the cumulant matrix of the received data instead of the cross-spectral matrix the wideband correlated sources are perfectly located in the very noisy environment. We demonstrate the performance of the proposed algorithm on the real data recorded during an underwater acoustics experiments.

Challenges to Technological Advancement in Economically Weak Countries: An Assessment of the Nigerian Educational Situation

Nigeria is considered as one of the many countries in sub-Saharan Africa with a weak economy and gross deficiencies in technology and engineering. Available data from international monitoring and regulatory organizations show that technology is pivotal to determining the economic strengths of nations all over the world. Education is critical to technology acquisition, development, dissemination and adaptation. Thus, this paper seeks to critically assess and discuss issues and challenges facing technological advancement in Nigeria, particularly in the education sector, and also proffers solutions to resuscitate the Nigerian education system towards achieving national technological and economic sustainability such that Nigeria can compete favourably with other technologicallydriven economies of the world in the not-too-distant future.

A Sub-Pixel Image Registration Technique with Applications to Defect Detection

This paper presents a useful sub-pixel image registration method using line segments and a sub-pixel edge detector. In this approach, straight line segments are first extracted from gray images at the pixel level before applying the sub-pixel edge detector. Next, all sub-pixel line edges are mapped onto the orientation-distance parameter space to solve for line correspondence between images. Finally, the registration parameters with sub-pixel accuracy are analytically solved via two linear least-square problems. The present approach can be applied to various fields where fast registration with sub-pixel accuracy is required. To illustrate, the present approach is applied to the inspection of printed circuits on a flat panel. Numerical example shows that the present approach is effective and accurate when target images contain a sufficient number of line segments, which is true in many industrial problems.

Possible Futures for Doctoral Research Training in Design

In this paper, we argue that Design research is basic to countries- national productivity and competition agendas at the same time that vagaries of research training presents as one of the barriers faced by Design Higher Degree by Research students in engaging those agendas. We argue that, given industry requirements for research-trained recruits, students have the right to expect that research training will provide the foundations of a successful career on an academic or research pathway or a professional pathway, but that universities have yet to address problems in their provision of research training for Design doctoral students. We suggest that to facilitate this, rigorous research conducted on the provision of Doctoral programs in Design would serve to inform future activities in Design research in productive ways.

Customer Knowledge and Service Development, the Web 2.0 Role in Co-production

The paper is concerned with relationships between SSME and ICTs and focuses on the role of Web 2.0 tools in the service development process. The research presented aims at exploring how collaborative technologies can support and improve service processes, highlighting customer centrality and value coproduction. The core idea of the paper is the centrality of user participation and the collaborative technologies as enabling factors; Wikipedia is analyzed as an example. The result of such analysis is the identification and description of a pattern characterising specific services in which users collaborate by means of web tools with value co-producers during the service process. The pattern of collaborative co-production concerning several categories of services including knowledge based services is then discussed.

Development of a RAM Simulation Model for Acid Gas Removal System

A reliability, availability and maintainability (RAM) model has been built for acid gas removal plant for system analysis that will play an important role in any process modifications, if required, for achieving its optimum performance. Due to the complexity of the plant, the model was based on a Reliability Block Diagram (RBD) with a Monte Carlo simulation engine. The model has been validated against actual plant data as well as local expert opinions, resulting in an acceptable simulation model. The results from the model showed that the operation and maintenance can be further improved, resulting in reduction of the annual production loss.

Effect of Salt Solution and Plasticity Index on undrain Shear Strength of Clays

Compacted clay liners (CCLs) are the main materials used in waste disposal landfills due to their low permeability. In this study, the effect on the shear resistant of clays with inorganic salt solutions as permeate fluid was experimentally investigated. For this purpose, NaCl inorganic salt solution at concentrations of 2, 5, 10% and deionized water were used. Laboratory direct shear and Vane shear tests were conducted on three compacted clays with low, medium and high plasticity. Results indicated that the solutions type and its concentration affect the shear properties of the mixture. In the light of this study, the influence magnitude of these inorganic salts in varies concentrations in different clays were determined and more suitable compacted clay with the compare of plasticity were found.

Analytical Study of Component Based Software Engineering

This paper is a survey of current component-based software technologies and the description of promotion and inhibition factors in CBSE. The features that software components inherit are also discussed. Quality Assurance issues in componentbased software are also catered to. The feat research on the quality model of component based system starts with the study of what the components are, CBSE, its development life cycle and the pro & cons of CBSE. Various attributes are studied and compared keeping in view the study of various existing models for general systems and CBS. When illustrating the quality of a software component an apt set of quality attributes for the description of the system (or components) should be selected. Finally, the research issues that can be extended are tabularized.

Enhancing Performance of Bluetooth Piconets Using Priority Scheduling and Exponential Back-Off Mechanism

Bluetooth is a personal wireless communication technology and is being applied in many scenarios. It is an emerging standard for short range, low cost, low power wireless access technology. Current existing MAC (Medium Access Control) scheduling schemes only provide best-effort service for all masterslave connections. It is very challenging to provide QoS (Quality of Service) support for different connections due to the feature of Master Driven TDD (Time Division Duplex). However, there is no solution available to support both delay and bandwidth guarantees required by real time applications. This paper addresses the issue of how to enhance QoS support in a Bluetooth piconet. The Bluetooth specification proposes a Round Robin scheduler as possible solution for scheduling the transmissions in a Bluetooth Piconet. We propose an algorithm which will reduce the bandwidth waste and enhance the efficiency of network. We define token counters to estimate traffic of real-time slaves. To increase bandwidth utilization, a back-off mechanism is then presented for best-effort slaves to decrease the frequency of polling idle slaves. Simulation results demonstrate that our scheme achieves better performance over the Round Robin scheduling.

Validation of Automation Systems using Temporal Logic Model Checking and Groebner Bases

Validation of an automation system is an important issue. The goal is to check if the system under investigation, modeled by a Petri net, never enters the undesired states. Usually, tools dedicated to Petri nets such as DESIGN/CPN are used to make reachability analysis. The biggest problem with this approach is that it is impossible to generate the full occurence graph of the system because it is too large. In this paper, we show how computational methods such as temporal logic model checking and Groebner bases can be used to verify the correctness of the design of an automation system. We report our experimental results with two automation systems: the Automated Guided Vehicle (AGV) system and the traffic light system. Validation of these two systems ranged from 10 to 30 seconds on a PC depending on the optimizing parameters.

Application of CFD for Air Flow Analysis underneath Natural Ventilation with Forced Convection in Roof Attic

In research on natural ventilation, and passive cooling with forced convection, is essential to know how heat flows in a solid object and the pattern of temperature distribution on their surfaces, and eventually how air flows through and convects heat from the surfaces of steel under roof. This paper presents some results from running the computational fluid dynamic program (CFD) by comparison between natural ventilation and forced convection within roof attic that is received directly from solar radiation. The CFD program for modeling air flow inside roof attic has been modified to allow as two cases. First case, the analysis under natural ventilation, is closed area in roof attic and second case, the analysis under forced convection, is opened area in roof attic. These extend of all cases to available predictions of variations such as temperature, pressure, and mass flow rate distributions in each case within roof attic. The comparison shows that this CFD program is an effective model for predicting air flow of temperature and heat transfer coefficient distribution within roof attic. The result shows that forced convection can help to reduce heat transfer through roof attic and an around area of steel core has temperature inner zone lower than natural ventilation type. The different temperature on the steel core of roof attic of two cases was 10-15 oK.

Using Fractional Factorial Designs for Variable Importance in Random Forest Models

Random Forests are a powerful classification technique, consisting of a collection of decision trees. One useful feature of Random Forests is the ability to determine the importance of each variable in predicting the outcome. This is done by permuting each variable and computing the change in prediction accuracy before and after the permutation. This variable importance calculation is similar to a one-factor-at a time experiment and therefore is inefficient. In this paper, we use a regular fractional factorial design to determine which variables to permute. Based on the results of the trials in the experiment, we calculate the individual importance of the variables, with improved precision over the standard method. The method is illustrated with a study of student attrition at Monash University.

Design and Implementation of Cricket-based Location Tracking System

In this paper, we present a novel approach to location system under indoor environment. The key idea of our work is accurate distance estimation with cricket-based location system using A* algorithm. We also use magnetic sensor for detecting obstacles in indoor environment. Finally, we suggest how this system can be used in various applications such as asset tracking and monitoring.