Response of BGA-Urea Fertigation as N2 Source on Growth Parameters and Yield of Paddy (Oryza sativa L.) in Agra (India)

Paddy being cultivated since about 10,000 years B.C in Ganga Valley in India, its production reached up to 99 million tons in the year 2012. BGA are of much ecological importance for maintaining the soil fertility and reclaiming the alkalinity. In present investigation attempts were made to identify the local cyanobacterial genera from the paddy fields, BGA application for green farming enabling the paddy to utilize more amount of nitrogen released and to examine its impact along with Urea upon growth and yield responses of the Paddy crop. It was observed that combined treatment of BGA with Urea proved better response in almost all growth parameters and yield attributes except number of tillers/ Plant and grains/ panicle as compared to application of either Urea or BGA alone. The Paddy growers should be encouraged to adopt BGA along with Urea as source of Nitrogen for Paddy cultivation.

[Ti(OC4H9)4/2,5-Dimethoxytetrahydrofuran/ TEA/Ethylene Chlorobromide] as a Novel Homogeneous Catalyst System Effective for the Ethylene Dimerization Reaction

In the present research, the titanium-catalyzed ethylene dimerization and more specifically, the concomitant byproducts and polymer formation have been studied in the presence of 2,5-dimethoxytetrahydrofuran as an electron donor compound in the combination with triethylaluminium (TEA) as activator. Then, we added ethylene chlorobromide as a new efficient promoter to the relevant catalyst system. Finally, the behavior of novel homogeneous [Titanium tetrabutoxide (Ti(OC4H9)4)/2,5-dimethoxytetrahydrofuran/ TEA/ethylene chlorobromide] was investigated in the various operating conditions for the optimum production of 1-butene. In the optimum conditions, a very high ethylene conversion (almost 90.77 %), a relative high selectivity to 1-butene (79.00 %), yield of reaction equal to 71.70 % and a significant productivity (turnover frequency equal to 1370 h-1) were achieved.

Steady State Simulation and Experimental Study of an Ethane Recovery Unit in an Iranian Natural Gas Refinery

The production and consumption of natural gas is on the rise throughout the world as a result of its wide availability, ease of transportation, use and clean-burning characteristics. The chief use of ethane is in the chemical industry in the production of Ethene (ethylene) by steam cracking. In this simulation, obtained ethane recovery percent based on Gas sub-cooled process (GSP) is 99.9 by mole that is included 32.1% by using de-methanizer column and 67.8% by de-ethanizer tower. The outstanding feature of this process is the novel split-vapor concept that employs to generate reflux for de-methanizer column. Remain amount of ethane in export gas cause rise in gross heating value up to 36.66 MJ/Nm3 in order to use in industrial and household consumptions.

Effect of Conservation Agriculture on Maize Yield in the Transilvanian Plain, Romania

An experimental study is presented on the effect of Conservation Agriculture (CA) compared to Conventional Agriculture (ConvA) upon Maize Yield based on split-plot model. Two factors have been considered: A Factor-Fertilization with two variants: A1- N40P40 kg/ha and A2- N90P70 kg/ha; B Factor- Crop protection with 4 variants : B1- 4 treatments, B2-3 treatments, B3- 2 treatments and B4- 1 treatment. In comparison with conventional agriculture, CA determined lower maize yields. Fertilization is the key factor determining a yield gain of 973.58 kg/ha in ConvA and 1,123.33 kg/ha in CA. A reduced number of treatments determined a yield decline. The A-B interaction had a positive effect on maize yield when a larger amount of fertilizer and 4 or 3 treatments were applied in ConvA and a benefic in CA for highest fertilization level and 2 treatments. The B2A2 ConvA variant was the most efficient leading to 302.67 kg/ha gain while B3A2 CA variant brought 181.33 kg production gain.

Project Selection Using Fuzzy Group Analytic Network Process

This paper deals with the project selection problem. Project selection problem is one of the problems arose firstly in the field of operations research following some production concepts from primary product mix problem. Afterward, introduction of managerial considerations into the project selection problem have emerged qualitative factors and criteria to be regarded as well as quantitative ones. To overcome both kinds of criteria, an analytic network process is developed in this paper enhanced with fuzzy sets theory to tackle the vagueness of experts- comments to evaluate the alternatives. Additionally, a modified version of Least-Square method through a non-linear programming model is augmented to the developed group decision making structure in order to elicit the final weights from comparison matrices. Finally, a case study is considered by which developed structure in this paper is validated. Moreover, a sensitivity analysis is performed to validate the response of the model with respect to the condition alteration.

Identification of Anaerobic Microorganisms for Converting Kitchen Waste to Biogas

Anaerobic digestion process is one of the alternative methods to convert organic waste into methane gas which is a fuel and energy source. Activities of various kinds of microorganisms are the main factor for anaerobic digestion which produces methane gas. Therefore, in this study a modified Anaerobic Baffled Reactor (ABR) with working volume of 50 liters was designed to identify the microorganisms through biogas production. The mixture of 75% kitchen waste and 25% sewage sludge was used as substrate. Observations on microorganisms in the ABR showed that there exists a small amount of protozoa (5%) and fungi (2%) in the system, but almost 93% of the microorganism population consists of bacteria. It is definitely clear that bacteria are responsible for anaerobic biodegradation of kitchen waste. Results show that in the acidification zone of the ABR (front compartments of reactor) fast growing bacteria capable of growth at high substrate levels and reduced pH was dominant. A shift to slower growing scavenging bacteria that grow better at higher pH was occurring towards the end of the reactor. Due to the ability of activity in acetate environment the percentages of Methanococcus, Methanosarcina and Methanotrix were higher than other kinds of methane former in the system.

Using Combination of Optimized Recurrent Neural Network with Design of Experiments and Regression for Control Chart Forecasting

recurrent neural network (RNN) is an efficient tool for modeling production control process as well as modeling services. In this paper one RNN was combined with regression model and were employed in order to be checked whether the obtained data by the model in comparison with actual data, are valid for variable process control chart. Therefore, one maintenance process in workshop of Esfahan Oil Refining Co. (EORC) was taken for illustration of models. First, the regression was made for predicting the response time of process based upon determined factors, and then the error between actual and predicted response time as output and also the same factors as input were used in RNN. Finally, according to predicted data from combined model, it is scrutinized for test values in statistical process control whether forecasting efficiency is acceptable. Meanwhile, in training process of RNN, design of experiments was set so as to optimize the RNN.

Investigation of Gas Phase Composition During Carbon Nanotube Production

Chemical vapor deposition method was used to produce carbon nanotubes on an iron based catalyst from acetylene. Gas-phase samples collected from the different positions of the tubular reactor were analyzed by GC/MS. A variety of species ranging from hydrogen to naphthalene were observed and changes in their concentrations were plotted against the reactor position. Briefly benzene, toluene, styrene, indene and naphthalene were the main higher molecular weight species and vinylacetylene and diacetylene were the important intermediates. Nanotube characterization was performed by scanning electron microscopy and transmission electron microscopy.

Comparative Life Cycle Assessment of Rapeseed Oil and Biodiesel from Winter Rape Produced in Romania

The environmental performance of rapeseed oil (RO) and rapeseed methyl ester(RME) from winter rape as fuels produced in Romanian agroclimate is analyzed in this paper. The proposed methodology is life cycle assessment (LCA) and takes into consideration the influence of grain production and agroclimatic conditions. This study shows favorable results first for RO and then for RME. When compared to diesel fuel, both studied biofuels show better results in the following impact categories: Abiotic depletion potential (ADP), Ozone layer depletion (ODP) and Photochemical ozone creation potential (POCP).Furthermore, the environmental performance of the two biofuels studied can be improved by changing the type of fertilizer used and also by using biofuels instead of diesel in the field works.

Performance Comparison of Two Assembly Line Concepts: Conveyor Line and Box Assembly Line

As there has been a recognizable transition in automotive industry from mass production to mass customization, automobile manufacturers and their suppliers have been seeking ways for more flexible and efficient processes. Eventually, modular production is currently being applied to manage the changing orders of the industry. In this paper, two different modular assembly line concepts were studied: conveyor line and box assembly line. Mathematical model for two assembly line concepts were developed and their production line efficiency were compared as a performance measure to improve their assembly line balancing.

On Innovation and Knowledge Economy in Russia

Innovational development of regions in Russia is generally faced with the essential influence from federal and local authorities. The organization of effective mechanism of innovation development (and self-development) is impossible without establishment of defined institutional conditions in the analyzed field. Creative utilization of scientific concepts and information should merge, giving rise to continuing innovation and advanced production. The paper presents an analysis of institutional conditions in the field of creation and development of innovation activity infrastructure and transferring of knowledge and skills between different economic agents in Russia. Knowledge is mainly privately owned, developed through R&D investments and incorporated into technology or a product. Innovation infrastructure is a strong concentration mechanism of advanced facilities, which are mainly located inside large agglomerations or city-regions in order to benefit from scale effects in both input markets (human capital, private financial capital) and output markets (higher education services, research services). The empirical results of the paper show that in the presence of more efficient innovation and knowledge transfer and transcoding system and of a more open attitude of economic agents towards innovation, the innovation and knowledge capacity of regional economy is much higher.

In vitro Culture Medium Sterilization by Chemicals and Essential Oils without Autoclaving and Growth of Chrysanthemum Nodes

Plant tissue culture is an important in vitro technology applied for agricultural and industrial production. A sterile condition of culture medium is one of the main aspects. The alternative technique for medium sterilization to replace autoclaving was carried out. For sterilization of plant tissue culture medium without autoclaving, ten commercial pure essential oils and 5 disinfectants were tested. Each essential oil or disinfectant was added to a 20-mL Murashige and Skoog (MS) medium before medium was solidified in a 120-mL container, kept for 2 weeks before evaluating sterile conditions. Treated media, supplemented with essential oils or disinfectants, were compared to control medium, autoclaved at 121 degree Celsius for 15 min. Sterile conditions of MS medium were found 100% from betel oil or clove oil (18 mL/20 mL medium), cinnamon oil (36 mL/20 mL medium), lavender oil or holy basil oil (108 mL/20 mL medium), and lemon oil or tea tree oil or turmeric oil (252 mL/20 mL medium), compared to 100% sterile condition from autoclaved medium. For disinfectants, 2% iodine + 2.4% potassium iodide, 2% merbromine solution, 10% povidone-iodine, 6% sodium hypochlorite or 0.1% thimerosal at 36 mL/20 mL medium provided 100% sterile conditions. Furthermore, growth of new shoots from chrysanthemum node explants on treated media (fresh weight, shoot length, root length and number of node) were also reported and discussed in the comparison of those on autoclaved medium.

Investigation of Pre-Treatment Parameters of Rye and Triticale for Bioethanol Production

This paper presents the new results of energy plant – rye and triticale at yellow ripeness and ripe, pre-treatment in high pressure steam reactor and monosaccharide extraction. There were investigated the influence of steam pressure (20 to 22 bar), retention duration (180 to 240 s) and catalytic sulphuric acid concentration strength (0 to 0.5 %) on the pre-treatment process, contents of monosaccharides (glucose, arabinose, xylose, mannose) and undesirable by-compounds (furfural and HMF) in the reactor. The study has determined that the largest amount of monosaccharides (37.2 % of glucose, 2.7 % of arabinose, 8.4 % of xylose, and 1.3 % of mannose) was received in the rye at ripe, the samples of which were mixed with 0.5 % concentration of catalytic sulphuric acid, and hydrolysed in the reactor, where the pressure was 20 bar, whereas the reaction time – 240 s.

Micro-aerobic, Anaerobic and Two-stage Condition for Ethanol Production by enterobacter aerogenes from Biodiesel-derived Crude Glycerol

The microbial production of ethanol from biodiesel¬derived crude glycerol by Enterobacter aerogenes TISTR1468, under micro-aerobic and anaerobic conditions, was investigated. The experimental results showed that micro-aerobic conditions were more favorable for cellular growth (4.0 g/L DCW), ethanol production (20.7 g/L) as well as the ethanol yield (0.47 g/g glycerol) than anaerobic conditions (1.2 g/L DCW, 6.3 g/L ethanol and 0.72 g/g glycerol, respectively). Crude glycerol (100 g/L) was consumed completely with the rate of 1.80 g/L/h. Two-stage fermentation (combination of micro-aerobic and anaerobic condition) exhibited higher ethanol production (24.5 g/L) than using one-stage fermentation (either micro-aerobic or anaerobic condition. The two- stage configuration, exhibited slightly higher crude glycerol consumption rate (1.81 g/L/h), as well as ethanol yield (0.56 g/g) than the one-stage configuration. Therefore, two-stage process was selected for ethanol production from E. aerogenes TISTR1468 in scale-up studies.

Enhancement of Biogas Production from Bakery Waste by Pseudomonas aeruginosa

Production of biogas from bakery waste was enhanced by additional bacterial cell. This study was divided into 2 steps. First step, grease waste from bakery industry-s grease trap was initially degraded by Pseudomonas aeruginosa. The concentration of byproduct, especially glycerol, was determined and found that glycerol concentration increased from 12.83% to 48.10%. Secondary step, 3 biodigesters were set up in 3 different substrates: non-degraded waste as substrate in first biodigester, degraded waste as substrate in secondary biodigester, and degraded waste mixed with swine manure in ratio 1:1 as substrate in third biodigester. The highest concentration of biogas was found in third biodigester that was 44.33% of methane and 63.71% of carbon dioxide. The lower concentration at 24.90% of methane and 18.98% of carbon dioxide was exhibited in secondary biodigester whereas the lowest was found in non-degraded waste biodigester. It was demonstrated that the biogas production was greatly increased with the initial grease waste degradation by Pseudomonas aeruginosa.

Is the Expansion of High-Tech Leaders Possible Within the New EU Members? A Case Study of Ammono S.A. and the High-Tech Financing System in Poland

Innovations, especially technological, are considered key-drivers for sustainable economic growth and competitiveness in the globalised world. As such they should also play an important role in the process of economical convergence inside the EU. Unfortunately, the problem of insufficient innovation performance concerns around half of the EU countries. Poland shows that a lack of a consistent high-tech financing system constitutes a serious obstacle for the development of innovative firms. In this article we will evaluate these questions referring to the example of Ammono S.A., a Polish company established to develop and commercialise an original technology for the production of bulk GaN crystals. We will focus on its efforts to accumulate the financial resources necessary at different stages of its development. The purpose of this article is to suggest possible ways to improve the national innovative system, which would make it more competent in generating high-tech leaders.

Experimental Investigation on the Effect of CO2 and WAG Injection on Permeability Reduction Induced by Asphaltene Precipitation in Light Oil

Permeability reduction induced by asphaltene precipitation during gas injection is one of the serious problems in the oil industry. This problem can lead to formation damage and decrease the oil production rate. In this work, Malaysian light oil sample has been used to investigate the effect CO2 injection and Water Alternating Gas (WAG) injection on permeability reduction. In this work, dynamic core flooding experiments were conducted to study the effect of CO2 and WAG injection on the amount of asphaltene precipitated. Core properties after displacement were inspected for any permeability reduction to study the effect of asphaltene precipitation on rock properties. The results showed that WAG injection gave less asphaltene precipitation and formation damage compared to CO2 injection. The study suggested that WAG injection can be one of the important factors of managing asphaltene precipitation.

Integration Methods and Processes of Product Design and Flexible Production for Direct Production within the iCIM 3000 System

Currently is characterized production engineering together with the integration of industrial automation and robotics such very quick view of to manufacture the products. The production range is continuously changing, expanding and producers have to be flexible in this regard. It means that need to offer production possibilities, which can respond to the quick change. Engineering product development is focused on supporting CAD software, such systems are mainly used for product design. That manufacturers are competitive, it should be kept procured machines made available capable of responding to output flexibility. In response to that problem is the development of flexible manufacturing systems, consisting of various automated systems. The integration of flexible manufacturing systems and subunits together with product design and of engineering is a possible solution for this issue. Integration is possible through the implementation of CIM systems. Such a solution and finding a hyphen between CAD and procurement system ICIM 3000 from Festo Co. is engaged in the research project and this contribution. This can be designed the products in CAD systems and watch the manufacturing process from order to shipping by the development of methods and processes of integration, This can be modeled in CAD systems products and watch the manufacturing process from order to shipping to develop methods and processes of integration, which will improve support for product design parameters by monitoring of the production process, by creating of programs for production using the CAD and therefore accelerates the a total of process from design to implementation.

Thermogravimetry Study on Pyrolysis of Various Lignocellulosic Biomass for Potential Hydrogen Production

This paper aims to study decomposition behavior in pyrolytic environment of four lignocellulosic biomass (oil palm shell, oil palm frond, rice husk and paddy straw), and two commercial components of biomass (pure cellulose and lignin), performed in a thermogravimetry analyzer (TGA). The unit which consists of a microbalance and a furnace flowed with 100 cc (STP) min-1 Nitrogen, N2 as inert. Heating rate was set at 20⁰C min-1 and temperature started from 50 to 900⁰C. Hydrogen gas production during the pyrolysis was observed using Agilent Gas Chromatography Analyzer 7890A. Oil palm shell, oil palm frond, paddy straw and rice husk were found to be reactive enough in a pyrolytic environment of up to 900°C since pyrolysis of these biomass starts at temperature as low as 200°C and maximum value of weight loss is achieved at about 500°C. Since there was not much different in the cellulose, hemicelluloses and lignin fractions between oil palm shell, oil palm frond, paddy straw and rice husk, the T-50 and R-50 values obtained are almost similar. H2 productions started rapidly at this temperature as well due to the decompositions of biomass inside the TGA. Biomass with more lignin content such as oil palm shell was found to have longer duration of H2 production compared to materials of high cellulose and hemicelluloses contents.

Novel Trends in Manufacturing Systems with View on Implementation Possibilities of Intelligent Automation

The current trend of increasing quality and demands of the final product is affected by time analysis of the entire manufacturing process. The primary requirement of manufacturing is to produce as many products as soon as possible, at the lowest possible cost, but of course with the highest quality. Such requirements may be satisfied only if all the elements entering and affecting the production cycle are in a fully functional condition. These elements consist of sensory equipment and intelligent control elements that are essential for building intelligent manufacturing systems. The intelligent manufacturing paradigm includes a new approach to production system structure design. Intelligent behaviors are based on the monitoring of important parameters of system and its environment. The flexible reaction to changes. The realization and utilization of this design paradigm as an "intelligent manufacturing system" enables the flexible system reaction to production requirement as soon as environmental changes too. Results of these flexible reactions are a smaller layout space, be decreasing of production and investment costs and be increasing of productivity. Intelligent manufacturing system itself should be a system that can flexibly respond to changes in entering and exiting the process in interaction with the surroundings.