Investigation of Gas Phase Composition During Carbon Nanotube Production

Chemical vapor deposition method was used to produce carbon nanotubes on an iron based catalyst from acetylene. Gas-phase samples collected from the different positions of the tubular reactor were analyzed by GC/MS. A variety of species ranging from hydrogen to naphthalene were observed and changes in their concentrations were plotted against the reactor position. Briefly benzene, toluene, styrene, indene and naphthalene were the main higher molecular weight species and vinylacetylene and diacetylene were the important intermediates. Nanotube characterization was performed by scanning electron microscopy and transmission electron microscopy.




References:
[1] S. Iijima, " Helical microtubules of graphitic carbon", Nature, 354; 56-
58, 1991.
[2] D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J.
Vazques, R. Beyers, "Cobalt-catalyst growth of carbon nanotubes with single-atomic-layer walls". Nature, 363; 605-607, 1993.
[3] S. J. Lee, H. K. Baik,J. Yoo, J. H: Han, "Large scale synthesis of carbon
nanotubes by plasma rotating arc discharge technique". Diamond and Releted Materials, 11; 914-917, 2002.
[4] X. Sun, W. Bao, Y. Lv, J. Deng, X. Wang, "Synthesis of high quality single-walled carbon nanotubes by arc discharge method in large scale". Materials Letter, 61; 3956-3958, 2007.
[5] R. E. Smalley, D. T. Colbert, A. Thess, P. Nikolaev, T. Guo, "Catalytic
growth of single-walled manotubes by laser vaporization". Chemical
Physics Letters, 243; 49-54, 1995.
[6] M. Zhang, M. Yudasaka, S. Iijima, "Single-wall carbon nanotubes: a
high yield of tubes through laser ablation of a crude-tube target". Chemical Physics Letters, 336; 196-200, 2001.
[7] E. Munoz, W. K. Waser, A. M. Benito,G. F. de la Fuente, M. T. Martinez , "Single-walled carbon nanotubes producet by laser ablation
under different inert atmospheres". Synthetic Metals,103; 2490-2491,
1999.
[8] M. J. Yacaman, M. M. Yoshida, L. Rendon, J. G. Santiesteban,
"Catalytic growth of carbon microtubules with fullerene structure". Appl. Phys. Lett., 62; 202-204, 1993.
[9] J. Ting, S. Lin, "Growth and characteristics of carbon nanotubes obtained under different C2H2/N2/NH3 concentrations". Carbon, 45;
1934-1940, 2007.
[10] M. J. Bronikowski, "Longer nanotubes at lower temperatures: The
influence of effective activation energies on carbon nanotube growth by
thermal chemical vapor deposition".J. Phys. Chem. C, 48; 17705-17712,2007.
[11] T. C: Schmitt, A. S. Biris, D. W. Miller, A. R. Biris, D. Lupu S. Trigwell, Z. U. Rahman, "Analysis of effluent gases during the CCVD
growth of multi-wall carbon nanotubes from acetylene". Carbon, 44; 2032-2038, 2006.
[12] H. Li, D. He, T. Li, J. Bai, M. Genestoux, "Chemical kinetics of catalytic chemical vapor deposition of an acetylene/xylene mixture for
improved carbon nanotube production". Carbon, 48; 4330-4342, 2010.
[13] J. Kong, A. M. Cassell, H. Dai, "Chemical vapor deposition of methane
for single-walled carbon nanotubes". Chemical Physics Letters, 292;
567-574, 1998.
[14] Y. Chen, B. Wang, L. Li, Y. Yang, D. Ciuparu, S. Lim, G. L. Haller, L.
D. Pfefferle, "Effect of different carbon sources on the growth of singlewalled
carbon nanotube from MCM-41 containing nickel". Carbon, 45; 2217-2228, 2007.
[15] J. H. Hafner, M. J. Bronikowski, B. R. Azamian, P. Nikolaev, A. G.
Rinzler, D. T. Colbert, K. A. Smith, R. E. Smalley, "Catalytic growth of
single-wall carbon nanotubes from metal particles". Chemical Physics
Letters, 296; 195-202, 1998.
[16] B.K. Singh, H. Ryu,, R. C. Chikate, N. D. Hoa, S. J. Park, S. Kim, J. R. Lee, "Growth of multiwalled carbon nanotubes from acetylene over in
situ formed Co nanoparticles on MgO support". Solid State
Comminucations, 139; 102-107, 2006.
[17] M. Ritschel, A. Leonhardt, D. Elefant, S. Oswald, B. B├╝chner,
"Rhenium-Catalyzed Growth Carbon Nanotubes" J. Phys. Chem. C, 24; 8414-8417, 2007.