Factors of Effective Business Software Systems Development and Enhancement Projects Work Effort Estimation

Majority of Business Software Systems (BSS) Development and Enhancement Projects (D&EP) fail to meet criteria of their effectiveness, what leads to the considerable financial losses. One of the fundamental reasons for such projects- exceptionally low success rate are improperly derived estimates for their costs and time. In the case of BSS D&EP these attributes are determined by the work effort, meanwhile reliable and objective effort estimation still appears to be a great challenge to the software engineering. Thus this paper is aimed at presenting the most important synthetic conclusions coming from the author-s own studies concerning the main factors of effective BSS D&EP work effort estimation. Thanks to the rational investment decisions made on the basis of reliable and objective criteria it is possible to reduce losses caused not only by abandoned projects but also by large scale of overrunning the time and costs of BSS D&EP execution.

Splitting Modified Donor-Cell Schemes for Spectral Action Balance Equation

The spectral action balance equation is an equation that used to simulate short-crested wind-generated waves in shallow water areas such as coastal regions and inland waters. This equation consists of two spatial dimensions, wave direction, and wave frequency which can be solved by finite difference method. When this equation with dominating propagation velocity terms are discretized using central differences, stability problems occur when the grid spacing is chosen too coarse. In this paper, we introduce the splitting modified donorcell scheme for avoiding stability problems and prove that it is consistent to the modified donor-cell scheme with same accuracy. The splitting modified donor-cell scheme was adopted to split the wave spectral action balance equation into four one-dimensional problems, which for each small problem obtains the independently tridiagonal linear systems. For each smaller system can be solved by direct or iterative methods at the same time which is very fast when performed by a multi-cores computer.

Experimental and Theoretical Study of Melt Viscosity in Injection Process

The state of melt viscosity in injection process is significantly influenced by the setting parameters due to that the shear rate of injection process is higher than other processes. How to determine plastic melt viscosity during injection process is important to understand the influence of setting parameters on the melt viscosity. An apparatus named as pressure sensor bushing (PSB) module that is used to evaluate the melt viscosity during injection process is developed in this work. The formulations to coupling melt viscosity with fill time and injection pressure are derived and then the melt viscosity is determined. A test mold is prepared to evaluate the accuracy on viscosity calculations between the PSB module and the conventional approaches. The influence of melt viscosity on the tensile strength of molded part is proposed to study the consistency of injection quality.

An Introduction to the Concept of University – Community Business Continuity Management for Disaster Resilient City

The fundamental objective of the university is to genuinely provide a higher education to mankind and society. Higher education institutions earn billions of dollars in research funds, granted by national government or related institutions, which literally came from taxpayers. Everyday universities consume those grants; in return, provide society with a human resource and research developments. However, not all taxpayers have their major concerns on those researches, other than that they are more curiously to see the project being build tangibly and evidently to certify what they pay for. This paper introduces the concept of University – Community Business Continuity Management for Disaster – Resilient City, which modified the concept of Business Continuity Management (BCM) toward university community to create advancing collaboration leading to the disaster – resilient community and city. This paper focuses on describing in details the backgrounds and principles of the concept and discussing the advantages and limitations of the concept.

Kazakh Literature in Emigration and Works of Mazhit Aitbayev

Major social changes in the last century had significant impact on the Kazakh literature. Participants of the World War II, writers and poets imprisoned during the war, formed the Kazakh literature in emigration within the framework of 'Turkistan Legion'. This was a topic which remained closed until Kazakhstan gained its independence, though even after the independence, there were few research works done about the literature in emigration. The article studies the formation of the Kazakh literature in emigration, its prominent figures, its artistic heritage, and notes of emigration in works of poets and writers.

Accelerated Microwave Extraction of Natural Product using the Cryogrinding

Team distillation assisted by microwave extraction (SDAM) considered as accelerated technique extraction is a combination of microwave heating and steam distillation, performed at atmospheric pressure. SDAM has been compared with the same technique coupled with the cryogrinding of seeds (SDAM -CG). Isolation and concentration of volatile compounds are performed by a single stage for the extraction of essential oil from Cuminum cyminum seeds. The essential oils extracted by these two methods for 5 min were quantitatively (yield) and qualitatively (aromatic profile) no similar. These methods yield an essential oil with higher amounts of more valuable oxygenated compounds, and allow substantial savings of costs, in terms of time, energy and plant material. SDAM and SDAM-CG is a green technology and appears as a good alternative for the extraction of essential oils from aromatic plants.

Dataset Analysis Using Membership-Deviation Graph

Classification is one of the primary themes in computational biology. The accuracy of classification strongly depends on quality of a dataset, and we need some method to evaluate this quality. In this paper, we propose a new graphical analysis method using 'Membership-Deviation Graph (MDG)' for analyzing quality of a dataset. MDG represents degree of membership and deviations for instances of a class in the dataset. The result of MDG analysis is used for understanding specific feature and for selecting best feature for classification.

Mathematical Model and Solution Algorithm for Containership Operation/Maintenance Scheduling

This study considers the problem of determining operation and maintenance schedules for a containership equipped with components during its sailing according to a pre-determined navigation schedule. The operation schedule, which specifies work time of each component, determines the due-date of each maintenance activity, and the maintenance schedule specifies the actual start time of each maintenance activity. The main constraints are component requirements, workforce availability, working time limitation, and inter-maintenance time. To represent the problem mathematically, a mixed integer programming model is developed. Then, due to the problem complexity, we suggest a heuristic for the objective of minimizing the sum of earliness and tardiness between the due-date and the starting time of each maintenance activity. Computational experiments were done on various test instances and the results are reported.

MIMO System Order Reduction Using Real-Coded Genetic Algorithm

In this paper, real-coded genetic algorithm (RCGA) optimization technique has been applied for large-scale linear dynamic multi-input-multi-output (MIMO) system. The method is based on error minimization technique where the integral square error between the transient responses of original and reduced order models has been minimized by RCGA. The reduction procedure is simple computer oriented and the approach is comparable in quality with the other well-known reduction techniques. Also, the proposed method guarantees stability of the reduced model if the original high-order MIMO system is stable. The proposed approach of MIMO system order reduction is illustrated with the help of an example and the results are compared with the recently published other well-known reduction techniques to show its superiority.

Assessment of Compaction Temperatures on Hot Mix Asphalt (HMA) Properties

Hot Mix Asphalt (HMA) is one of the most commonest constructed asphalts in Iran and the quality control of constructed roads with HMA have been always paid due attention by researchers. The quality control of constructed roads with this method is being usually carried out by measuring volumetric parameters of HMA marshall samples. One of the important parameters that has a critical role in changing these volumetric parameters is “compaction temperature"; which as a result of its changing, volumetric parameters of Marshall Samples and subsequently constructed asphalt is encountered with variations. In this study, considering the necessity of preservation of the compaction temperature, the effect of various temperatures on Hot Mix Asphalt (HMA) samples properties has been evaluated. As well, to evaluate the effect of this parameter on different grading, two different grading (Top coat index grading and binder index grading) have been used and samples were compacted at 5 various temperatures.

Experimental and Numerical Study of A/C Outletsand Its Impact on Room Airflow Characteristics

This paper investigates experimental and numerical study of the airflow characteristics for vortex, round and square ceiling diffusers and its effect on the thermal comfort in a ventilated room. Three different thermal comfort criteria namely; Mean Age of the Air (MAA), ventilation effectiveness (E), and Effective Draft Temperature (EDT) have been used to predict the thermal comfort zone inside the room. In experimental work, a sub-scale room is set-up to measure the temperature field in the room. In numerical analysis, unstructured grids have been used to discretize the numerical domain. Conservation equations are solved using FLUENT commercial flow solver. The code is validated by comparing the numerical results obtained from three different turbulence models with the available experimental data. The comparison between the various numerical models shows that the standard k-ε turbulence model can be used to simulate these cases successfully. After validation of the code, effect of supply air velocity on the flow and thermal field could be investigated and hence the thermal comfort. The results show that the pressure coefficient created by the square diffuser is 1.5 times greater than that created by the vortex diffuser. The velocity decay coefficient is nearly the same for square and round diffusers and is 2.6 times greater than that for the vortex diffuser.

Kurtosis, Renyi's Entropy and Independent Component Scalp Maps for the Automatic Artifact Rejection from EEG Data

The goal of this work is to improve the efficiency and the reliability of the automatic artifact rejection, in particular from the Electroencephalographic (EEG) recordings. Artifact rejection is a key topic in signal processing. The artifacts are unwelcome signals that may occur during the signal acquisition and that may alter the analysis of the signals themselves. A technique for the automatic artifact rejection, based on the Independent Component Analysis (ICA) for the artifact extraction and on some high order statistics such as kurtosis and Shannon-s entropy, was proposed some years ago in literature. In this paper we enhance this technique introducing the Renyi-s entropy. The performance of our method was tested exploiting the Independent Component scalp maps and it was compared to the performance of the method in literature and it showed to outperform it.

Ontology and CDSS Based Intelligent Health Data Management in Health Care Server

In ubiqutious healthcare environment, user's health data are transfered to the remote healthcare server by the user's wearable system or mobile phone. These collected user's health data should be managed and analyzed in the healthcare server, so that care giver or user can monitor user's physiological state. In this paper, we designed and developed the intelligent Healthcare Server to manage the user's health data using CDSS and ontology. Our system can analyze user's health data semantically using CDSS and ontology, and report the result of user's physiological raw data to the user and care giver.

Genetic Algorithm Based Approach for Actuator Saturation Effect on Nonlinear Controllers

In the real application of active control systems to mitigate the response of structures subjected to sever external excitations such as earthquake and wind induced vibrations, since the capacity of actuators is limited then the actuators saturate. Hence, in designing controllers for linear and nonlinear structures under sever earthquakes, the actuator saturation should be considered as a constraint. In this paper optimal design of active controllers for nonlinear structures by considering the actuator saturation has been studied. To this end a method has been proposed based on defining an optimization problem which considers the minimizing of the maximum displacement of the structure as objective when a limited capacity for actuator has been used as a constraint in optimization problem. To evaluate the effectiveness of the proposed method, a single degree of freedom (SDF) structure with a bilinear hysteretic behavior has been simulated under a white noise ground acceleration of different amplitudes. Active tendon control mechanism, comprised of pre-stressed tendons and an actuator, and extended nonlinear Newmark method based instantaneous optimal control algorithm have been used as active control mechanism and algorithm. To enhance the efficiency of the controllers, the weights corresponding to displacement, velocity, acceleration and control force in the performance index have been found by using the Distributed Genetic Algorithm (DGA). According to the results it has been concluded that the proposed method has been effective in considering the actuator saturation in designing optimal controllers for nonlinear frames. Also it has been shown that the actuator capacity and the average value of required control force are two important factors in designing nonlinear controllers for considering the actuator saturation.

An Iterative Algorithm for KLDA Classifier

The Linear discriminant analysis (LDA) can be generalized into a nonlinear form - kernel LDA (KLDA) expediently by using the kernel functions. But KLDA is often referred to a general eigenvalue problem in singular case. To avoid this complication, this paper proposes an iterative algorithm for the two-class KLDA. The proposed KLDA is used as a nonlinear discriminant classifier, and the experiments show that it has a comparable performance with SVM.

A PN Sequence Generator based on Residue Arithmetic for Multi-User DS-CDMA Applications

The successful use of CDMA technology is based on the construction of large families of encoding sequences with good correlation properties. This paper discusses PN sequence generation based on Residue Arithmetic with an effort to improve the performance of existing interference-limited CDMA technology for mobile cellular systems. All spreading codes with residual number system proposed earlier did not consider external interferences, multipath propagation, Doppler effect etc. In literature the use of residual arithmetic in DS-CDMA was restricted to encoding of already spread sequence; where spreading of sequence is done by some existing techniques. The novelty of this paper is the use of residual number system in generation of the PN sequences which is used to spread the message signal. The significance of cross-correlation factor in alleviating multi-access interference is also discussed. The RNS based PN sequence has superior performance than most of the existing codes that are widely used in DS-CDMA applications. Simulation results suggest that the performance of the proposed system is superior to many existing systems.

Experimental Technique for Vibration Reduction of a Motor Pumpin Medical Device

Many medical devices are driven by motor pumps. Some researchers reported that the vibration mainly affected medical devices using a motor pump. The purpose of this study was to examine the effect of stiffness and damping coefficient in a 3-dimensional (3D) model of a motor pump and spring. In the present paper, experimental and mathematical tests for the moments of inertia of the 3D model and the material properties were investigated by an INSTRON machine. The response surfaces could be generated by using 3D multi-body analysis and the design of experiment method. It showed that differences in contours of the response surface were clearly found for the particular area. Displacement of the center of the motor pump was decreased at K≈2000 N/M, C≈12.5 N-sec/M. However, the frequency was increased at K≈2000 N/M, C≈15 N-sec/M. In this study, this study suggested experimental technique for vibration reduction for a motor pump in medical device. The combined method suggested in this study will greatly contribute to design of medical devices concerning vibration and noise intervention.

Application of Genetic Algorithms for Evolution of Quantum Equivalents of Boolean Circuits

Due to the non- intuitive nature of Quantum algorithms, it becomes difficult for a classically trained person to efficiently construct new ones. So rather than designing new algorithms manually, lately, Genetic algorithms (GA) are being implemented for this purpose. GA is a technique to automatically solve a problem using principles of Darwinian evolution. This has been implemented to explore the possibility of evolving an n-qubit circuit when the circuit matrix has been provided using a set of single, two and three qubit gates. Using a variable length population and universal stochastic selection procedure, a number of possible solution circuits, with different number of gates can be obtained for the same input matrix during different runs of GA. The given algorithm has also been successfully implemented to obtain two and three qubit Boolean circuits using Quantum gates. The results demonstrate the effectiveness of the GA procedure even when the search spaces are large.

Advantages of Combining Solar Greenhouse System and Trombe Wall in Hot and Dry Climate and Housing Design: The Case of Isfahan

Nowadays over-consumption of fossil energy in buildings especially in residential buildings and also considering the increase in populations, the crisis of energy shortage in a near future is predictable. The recent performance of developed countries in construction with the aim of decreasing fossil energies shows that these countries have understood the incoming crisis and has taken reasonable and basic actions in this regard. However, Iranian architecture, with several thousands years of history, has acquired and executed invaluable experiences in designing, adapting and coordinating with the nature. Architectural studies during the recent decades show that imitating modern western architecture results in high energy wastage beside the fact that it not reasonably adaptable and corresponded with the habits and customs of people unlike the architecture in the past which was compatible and adaptable with the climatic conditions and this necessitates optimal using of renewable energies more than ever. This paper studies problems of design, execution and living in today's houses and reviews the characteristics of climatic elements paying special attention to the performance of trombe wall and solar greenhouse in traditional houses and offers some suggestions for combining these two elements and a climatic strategy.

Feedstock Effects on Selecting the Appropriate Coil Configuration for Cracking Furnaces

In the present research, steam cracking of two types of feedstocks i.e., naphtha and ethane is simulated for Pyrocrack1-1 and 2/2 coil configurations considering two key parameters of coil outlet temperature (COT) and coil capacity using a radical based kinetic model. The computer model is confirmed using the industrial data obtained from Amirkabir Petrochemical Complex. The results are in good agreement with performance data for naphtha cracking in a wide range of severity (0.4-0.7), and for ethane cracking on various conversions (50-70). It was found that Pyrocrack2-2 coil type is an appropriate choice for steam cracking of ethane at reasonable ethylene yield while resulting in much lower tube wall temperature while Pyrocrack1-1 coil type is a proper selection for liquid feedstocks i.e. naphtha. It can be used for cracking of liquid feedstocks at optimal ethylene yield whereas not exceeding the allowable maximum tube temperature.