A Multiple-State Based Power Control for Multi-Radio Multi-Channel Wireless Mesh Networks

Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in wireless mesh networks (WMNs). In this paper, we present asynchronous multiple-state based power control for MRMC WMNs. First, WMN is represented as a set of disjoint Unified Channel Graphs (UCGs). Second, each network interface card (NIC) or radio assigned to a unique UCG adjusts transmission power using predicted multiple interaction state variables (IV) across UCGs. Depending on the size of queue loads and intra- and inter-channel states, each NIC optimizes transmission power locally and asynchronously. A new power selection MRMC unification protocol (PMMUP) is proposed that coordinates interactions among radios. The efficacy of the proposed method is investigated through simulations.

The Investigation of the Role of Institutions in the Process of Growth and Development of Economy

The new institutional Economics helps generalization and expansion of new classic by adding the institution theories to Economic. It is clear that the appropriate institution is among the factors that lead to success in Economic programs. If the institutional are appropriate, the society will save the source and when we make use of time to apply the program, there will be welfare and average revenue product will also increase. In Economy, one should not expect the real manifestation of Economic programs only with a model for estimating and predicting rather institutions of the same purpose and along with production are needed to form the process of growth and development costs. In this research, the institution role in transaction costs, financial markets, distribution of revenue and capital and its influence on the process of growth and development are investigated so that handicaps and problems of Iran Economic Institutions can be recognized. In other words, incapability, non productivity and ambiguity of the institution in Iran Economic are some of the factors that handicap Economic growth and development. For example, Iran government as an important institution while having 20 ministries,83 organizations and 60 years of programming could not go along the growth and development but why?

Leadership Branding for Sustainable Customer Engagement

The purpose of this paper is to examine the inter relationships among various leadership branding constructs of entrepreneurs in small and medium sized enterprises (SMEs). We employ a quantitative structural equation modeling through a new leadership branding engagement model comprises constructs of leader-s or entrepreneur-s personality, branding practice and customer engagement. The results confirm that there are significant relationships between the three constructs and the major fit indices indicate that the data fits the proposed model. The findings provide insights and fill in the literature gaps on statistically validated representation of leadership branding for SMEs across new economic regions of Malaysia that may implicate other economic zones with similar situations. This study extends the establishment of a leadership branding engagement model with a new mechanism of using leaders- personality as a predictor to branding practice and customer engagement performance.

Numerical Analysis and Sensitivity Study of Non-Premixed Combustion Using LES

Non-premixed turbulent combustion Computational Fluid Dynamics (CFD) has been carried out in a simplified methanefuelled coaxial jet combustor employing Large Eddy Simulation (LES). The objective of this study is to evaluate the performance of LES in modelling non-premixed combustion using a commercial software, FLUENT, and investigate the effects of the grid density and chemistry models employed on the accuracy of the simulation results. A comparison has also been made between LES and Reynolds Averaged Navier-Stokes (RANS) predictions. For LES grid sensitivity test, 2.3 and 6.2 million cell grids are employed with the equilibrium model. The chemistry model sensitivity analysis is achieved by comparing the simulation results from the equilibrium chemistry and steady flamelet models. The predictions of the mixture fraction, axial velocity, species mass fraction and temperature by LES are in good agreement with the experimental data. The LES results are similar for the two chemistry models but influenced considerably by the grid resolution in the inner flame and near-wall regions.

Time-Cost-Quality Trade-off Software by using Simplified Genetic Algorithm for Typical Repetitive Construction Projects

Time-Cost Optimization "TCO" is one of the greatest challenges in construction project planning and control, since the optimization of either time or cost, would usually be at the expense of the other. Since there is a hidden trade-off relationship between project and cost, it might be difficult to predict whether the total cost would increase or decrease as a result of the schedule compression. Recently third dimension in trade-off analysis is taken into consideration that is quality of the projects. Few of the existing algorithms are applied in a case of construction project with threedimensional trade-off analysis, Time-Cost-Quality relationships. The objective of this paper is to presents the development of a practical software system; that named Automatic Multi-objective Typical Construction Resource Optimization System "AMTCROS". This system incorporates the basic concepts of Line Of Balance "LOB" and Critical Path Method "CPM" in a multi-objective Genetic Algorithms "GAs" model. The main objective of this system is to provide a practical support for typical construction planners who need to optimize resource utilization in order to minimize project cost and duration while maximizing its quality simultaneously. The application of these research developments in planning the typical construction projects holds a strong promise to: 1) Increase the efficiency of resource use in typical construction projects; 2) Reduce construction duration period; 3) Minimize construction cost (direct cost plus indirect cost); and 4) Improve the quality of newly construction projects. A general description of the proposed software for the Time-Cost-Quality Trade-Off "TCQTO" is presented. The main inputs and outputs of the proposed software are outlined. The main subroutines and the inference engine of this software are detailed. The complexity analysis of the software is discussed. In addition, the verification, and complexity of the proposed software are proved and tested using a real case study.

Analyzing of Public Transport Trip Generation in Developing Countries; A Case Study in Yogyakarta, Indonesia

Yogyakarta, as the capital city of Yogyakarta Province, has important roles in various sectors that require good provision of public transportation system. Ideally, a good transportation system should be able to accommodate the amount of travel demand. This research attempts to develop a trip generation model to predict the number of public transport passenger in Yogyakarta city. The model is built by using multiple linear regression analysis, which establishes relationship between trip number and socioeconomic attributes. The data consist of primary and secondary data. Primary data was collected by conducting household surveys which randomly selected. The resulted model is further applied to evaluate the existing TransJogja, a new Bus Rapid Transit system serves Yogyakarta and surrounding cities, shelters.

Optimization of Microwave-Assisted Extraction of Cherry Laurel (Prunus laurocerasus L.) Fruit Using Response Surface Methodology

Optimization of a microwave-assisted extraction of cherry laurel (Prunus laurocerasus) fruit using methanol was studied. The influence of process parameters (microwave power, plant material-to-solvent ratio and the extraction time) on the extraction efficiency were optimized by using response surface methodology. The predicted maximum yield of extractive substances (41.85 g/100 g fresh plant material) was obtained at microwave power of 600 W and plant material to solvent ratio of 0.2 g/cm3 after 26 minutes of extraction, while a mean value of 40.80±0.41 g/100 g fresh plant material was obtained from laboratory experiments. This proves applicability of the model in predicting optimal extraction conditions with minimal laborious and time consuming. The results indicated that all process parameters were effective on the extraction efficiency, while the most important factor was extraction time. In order to rationalize production the optimal economical condition which gave a large total extract yield with minimal energy and solvent consumption was found.

Feature Subset Selection approach based on Maximizing Margin of Support Vector Classifier

Identification of cancer genes that might anticipate the clinical behaviors from different types of cancer disease is challenging due to the huge number of genes and small number of patients samples. The new method is being proposed based on supervised learning of classification like support vector machines (SVMs).A new solution is described by the introduction of the Maximized Margin (MM) in the subset criterion, which permits to get near the least generalization error rate. In class prediction problem, gene selection is essential to improve the accuracy and to identify genes for cancer disease. The performance of the new method was evaluated with real-world data experiment. It can give the better accuracy for classification.

CART Method for Modeling the Output Power of Copper Bromide Laser

This paper examines the available experiment data for a copper bromide vapor laser (CuBr laser), emitting at two wavelengths - 510.6 and 578.2nm. Laser output power is estimated based on 10 independent input physical parameters. A classification and regression tree (CART) model is obtained which describes 97% of data. The resulting binary CART tree specifies which input parameters influence considerably each of the classification groups. This allows for a technical assessment that indicates which of these are the most significant for the manufacture and operation of the type of laser under consideration. The predicted values of the laser output power are also obtained depending on classification. This aids the design and development processes considerably.

On-line Recognition of Isolated Gestures of Flight Deck Officers (FDO)

The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.

A Fuzzy Predictive Filter for Sinusoidal Signals with Time-Varying Frequencies

Prediction of sinusoidal signals with time-varying frequencies has been an important research topic in power electronics systems. To solve this problem, we propose a new fuzzy predictive filtering scheme, which is based on a Finite Impulse Response (FIR) filter bank. Fuzzy logic is introduced here to provide appropriate interpolation of individual filter outputs. Therefore, instead of regular 'hard' switching, our method has the advantageous 'soft' switching among different filters. Simulation comparisons between the fuzzy predictive filtering and conventional filter bank-based approach are made to demonstrate that the new scheme can achieve an enhanced prediction performance for slowly changing sinusoidal input signals.

Dynamic Interaction Network to Model the Interactive Patterns of International Stock Markets

Studies in economics domain tried to reveal the correlation between stock markets. Since the globalization era, interdependence between stock markets becomes more obvious. The Dynamic Interaction Network (DIN) algorithm, which was inspired by a Gene Regulatory Network (GRN) extraction method in the bioinformatics field, is applied to reveal important and complex dynamic relationship between stock markets. We use the data of the stock market indices from eight countries around the world in this study. Our results conclude that DIN is able to reveal and model patterns of dynamic interaction from the observed variables (i.e. stock market indices). Furthermore, it is also found that the extracted network models can be utilized to predict movement of the stock market indices with a considerably good accuracy.

CFD Simulation and Validation of Flow Pattern Transition Boundaries during Moderately Viscous Oil-Water Two-Phase Flow through Horizontal Pipeline

In the present study, computational fluid dynamics (CFD) simulation has been executed to investigate the transition boundaries of different flow patterns for moderately viscous oil-water (viscosity ratio 107, density ratio 0.89 and interfacial tension of 0.032 N/m.) two-phase flow through a horizontal pipeline with internal diameter and length of 0.025 m and 7.16 m respectively. Volume of Fluid (VOF) approach including effect of surface tension has been employed to predict the flow pattern. Geometry and meshing of the present problem has been drawn using GAMBIT and ANSYS FLUENT has been used for simulation. A total of 47037 quadrilateral elements are chosen for the geometry of horizontal pipeline. The computation has been performed by assuming unsteady flow, immiscible liquid pair, constant liquid properties, co-axial flow and a T-junction as entry section. The simulation correctly predicts the transition boundaries of wavy stratified to stratified mixed flow. Other transition boundaries are yet to be simulated. Simulated data has been validated with our own experimental results.

Multivariate High Order Fuzzy Time Series Forecasting for Car Road Accidents

In this paper, we have presented a new multivariate fuzzy time series forecasting method. This method assumes mfactors with one main factor of interest. History of past three years is used for making new forecasts. This new method is applied in forecasting total number of car accidents in Belgium using four secondary factors. We also make comparison of our proposed method with existing methods of fuzzy time series forecasting. Experimentally, it is shown that our proposed method perform better than existing fuzzy time series forecasting methods. Practically, actuaries are interested in analysis of the patterns of causalities in road accidents. Thus using fuzzy time series, actuaries can define fuzzy premium and fuzzy underwriting of car insurance and life insurance for car insurance. National Institute of Statistics, Belgium provides region of risk classification for each road. Thus using this risk classification, we can predict premium rate and underwriting of insurance policy holders.

Migration of a Drop in Simple Shear Flow at Finite Reynolds Numbers: Size and Viscosity Ratio Effects

The migration of a deformable drop in simple shear flow at finite Reynolds numbers is investigated numerically by solving the full Navier-Stokes equations using a finite difference/front tracking method. The objectives of this study are to examine the effectiveness of the present approach to predict the migration of a drop in a shear flow and to investigate the behavior of the drop migration with different drop sizes and non-unity viscosity ratios. It is shown that the drop deformation depends strongly on the capillary number, so that; the proper non-dimensional number for the interfacial tension is the capillary number. The rate of migration increased with increasing the drop radius. In other words, the required time for drop migration to the centreline decreases. As the viscosity ratio increases, the drop rotates more slowly and the lubrication force becomes stronger. The increased lubrication force makes it easier for the drop to migrate to the centre of the channel. The migration velocity of the drop vanishes as the drop reaches the centreline under viscosity ratio of one and non-unity viscosity ratios. To validate the present calculations, some typical results are compared with available experimental and theoretical data.

A Study of Relationship between Mountaineering Participation Motivation and Risk Perception

The main purpose of this study is to analyze climbers involved in motivation and risk perception and analysis of the predictive ability of the risk perception "mountaineering" involved in motivation. This study used questionnaires, to have to climb the 3000m high mountain in Taiwan climbers object to carry out an investigation in order to non-random sampling, a total of 231 valid questionnaires were. After statistical analysis, the study found that: 1. Climbers the highest climbers involved in motivation "to enjoy the natural beauty of the fun. 2 climbers for climbers "risk perception" the highest: the natural environment of risk. 3. Climbers “seeking adventure stimulate", “competence achievement" motivation highly predictive of risk perception. Based on these findings, this study not only practices the recommendations of the outdoor leisure industry, and also related research proposals for future researchers.

A New Approach In Protein Folding Studies Revealed The Potential Site For Nucleation Center

A new approach to predict the 3D structures of proteins by combining the knowledge-based method and Molecular Dynamics Simulation is presented on the chicken villin headpiece subdomain (HP-36). Comparative modeling is employed as the knowledge-based method to predict the core region (Ala9-Asn28) of the protein while the remaining residues are built as extended regions (Met1-Lys8; Leu29-Phe36) which then further refined using Molecular Dynamics Simulation for 120 ns. Since the core region is built based on a high sequence identity to the template (65%) resulting in RMSD of 1.39 Å from the native, it is believed that this well-developed core region can act as a 'nucleation center' for subsequent rapid downhill folding. Results also demonstrate that the formation of the non-native contact which tends to hamper folding rate can be avoided. The best 3D model that exhibits most of the native characteristics is identified using clustering method which then further ranked based on the conformational free energies. It is found that the backbone RMSD of the best model compared to the NMR-MDavg is 1.01 Å and 3.53 Å, for the core region and the complete protein, respectively. In addition to this, the conformational free energy of the best model is lower by 5.85 kcal/mol as compared to the NMR-MDavg. This structure prediction protocol is shown to be effective in predicting the 3D structure of small globular protein with a considerable accuracy in much shorter time compared to the conventional Molecular Dynamics simulation alone.

PP-FSM: Peer to Peer File Share for Multimedia

Peer-to-Peer (P2P) is a self-organizing resource sharing network with no centralized authority or infrastructure, which makes it unpredictable and vulnerable. In this paper, we propose architecture to make the peer-to-peer network more centralized, predictable, and safer to use by implementing trust and stopping free riding.

User-s Hand Effect on TIS of Different GSM900/1800 Mobile Phone Models Using FDTD Method

This paper predicts the effect of the user-s hand-hold position on the Total Isotropic Sensitivity (TIS) of GSM900/1800 mobile phone antennas of realistic in-use conditions, where different semi-realistic mobile phone models, i.e., candy bar and clamshell, as well as different antenna types, i.e., external and internal, are simulated using a FDTD-based platform. A semi-realistic hand model consisting of three tissues and the SAM head are used in simulations. The results show a considerable impact on TIS of the adopted mobile phone models owing to the user-s hand presence at different positions, where a maximum level of TIS is obtained while grasping the upper part of the mobile phone against head. Maximum TIS levels are recorded in talk position for mobile phones with external antenna and maximum differences in TIS levels due to the hand-hold alteration are recorded for clamshell-type phones.

Quadrotor Black-Box System Identification

This paper presents a new approach in the identification of the quadrotor dynamic model using a black-box system for identification. Also the paper considers the problems which appear during the identification in the closed-loop and offers a technical solution for overcoming the correlation between the input noise present in the output