An Experimental Method for Measuring Clamping Force in Bolted Connections and Effect of Bolt Threads Lubrication on Its Value

In this paper, the details of an experimental method to measure the clamping force value at bolted connections due to application of wrenching torque to tighten the nut have been presented. A simplified bolted joint including a holed plate with a single bolt was considered to carry out the experiments. This method was designed based on Hooke-s law by measuring compressive axial strain of a steel bush placed between the nut and the plate. In the experimental procedure, the values of clamping force were calculated for seven different levels of applied torque, and this process was repeated three times for each level of the torque. Moreover, the effect of lubrication of threads on the clamping value was studied using the same method. In both conditions (dry and lubricated threads), relation between the torque and the clamping force have been displayed in graphs.

Knowledge Management in Cross- Organizational Networks as Illustrated by One of the Largest European ICT Associations A Case Study of the “METORA

In networks, mainly small and medium-sized businesses benefit from the knowledge, experiences and solutions offered by experts from industry and science or from the exchange with practitioners. Associations which focus, among other things, on networking, information and knowledge transfer and which are interested in supporting such cooperations are especially well suited to provide such networks and the appropriate web platforms. Using METORA as an example – a project developed and run by the Federal Association for Information Economy, Telecommunications and New Media e.V. (BITKOM) for the Federal Ministry of Economics and Technology (BMWi) – This paper will discuss how associations and other network organizations can achieve this task and what conditions they have to consider.

Identification of Binding Proteins That Interact with BVDV E2 Protein in Bovine Trophoblast Cell

Bovine viral diarrhea virus (BVDV) can cause lifelong persistent infection. One reason for the phenomena is attributed to BVDV infection to placenta tissue. However the mechanisms that BVDV invades into placenta tissue remain unclear. To clarify the molecular mechanisms, we investigated the possible means that BVDV entered into bovine trophoblast cells (TPC). Yeast two-hybrid system was used to identify proteins extracted from TPC, which interact with BVDV envelope glycoprotein E2. A PGbkt7-E2 yeast expression vector and TPC cDNA library were constructed. Through two rounds of screening, three positive clones were identified. Sequencing analysis indicated that all the three positive clones encoded the same protein clathrin. Physical interaction between clathrin and BVDV E2 protein was further confirmed by coimmunoprecipitation experiments. This result suggested that the clathrin might play a critical role in the process of BVDV entry into placenta tissue and might be a novel antiviral target for preventing BVDV infection.

Automatic Choice of Topics for Seminars by Clustering Students According to Their Profile

The new framework the Higher Education is immersed in involves a complete change in the way lecturers must teach and students must learn. Whereas the lecturer was the main character in traditional education, the essential goal now is to increase the students' participation in the process. Thus, one of the main tasks of lecturers in this new context is to design activities of different nature in order to encourage such participation. Seminars are one of the activities included in this environment. They are active sessions that enable going in depth into specific topics as support of other activities. They are characterized by some features such as favoring interaction between students and lecturers or improving their communication skills. Hence, planning and organizing strategic seminars is indeed a great challenge for lecturers with the aim of acquiring knowledge and abilities. This paper proposes a method using Artificial Intelligence techniques to obtain student profiles from their marks and preferences. The goal of building such profiles is twofold. First, it facilitates the task of splitting the students into different groups, each group with similar preferences and learning difficulties. Second, it makes it easy to select adequate topics to be a candidate for the seminars. The results obtained can be either a guarantee of what the lecturers could observe during the development of the course or a clue to reconsider new methodological strategies in certain topics.

Introducing the Main Factors of Accidents on the Roads of Iran and Studying its Causes and Strategies Applied to Decrease it

Road transportation system is the most important method of transporting the goods. Considering the most suitable geographical situation of Iran to transport the goods between Europe and Asia and placement of this country in direction of international corridors (east- west) , (north-south) and Asian land transport to infrastructure development “A.L.T.I.D" and Transport corridor Europe - Caucasus - Asia “T.R.A.C.E.C.A", noticing the security of road transportation system in this country is so important. In this paper the main factors of accidents on the roads of Iran are categorized regarding the rate of accidents occurred. Then apart from studying the main reasons of accidents of every category, the main factors of these events are studied and its strategies in Iran are introduced.

Near-Field Robust Adaptive Beamforming Based on Worst-Case Performance Optimization

The performance of adaptive beamforming degrades substantially in the presence of steering vector mismatches. This degradation is especially severe in the near-field, for the 3-dimensional source location is more difficult to estimate than the 2-dimensional direction of arrival in far-field cases. As a solution, a novel approach of near-field robust adaptive beamforming (RABF) is proposed in this paper. It is a natural extension of the traditional far-field RABF and belongs to the class of diagonal loading approaches, with the loading level determined based on worst-case performance optimization. However, different from the methods solving the optimal loading by iteration, it suggests here a simple closed-form solution after some approximations, and consequently, the optimal weight vector can be expressed in a closed form. Besides simplicity and low computational cost, the proposed approach reveals how different factors affect the optimal loading as well as the weight vector. Its excellent performance in the near-field is confirmed via a number of numerical examples.

An Innovational Intermittent Algorithm in Networks-On-Chip (NOC)

Every day human life experiences new equipments more automatic and with more abilities. So the need for faster processors doesn-t seem to finish. Despite new architectures and higher frequencies, a single processor is not adequate for many applications. Parallel processing and networks are previous solutions for this problem. The new solution to put a network of resources on a chip is called NOC (network on a chip). The more usual topology for NOC is mesh topology. There are several routing algorithms suitable for this topology such as XY, fully adaptive, etc. In this paper we have suggested a new algorithm named Intermittent X, Y (IX/Y). We have developed the new algorithm in simulation environment to compare delay and power consumption with elders' algorithms.

Automatically-generated Concept Maps as a Learning Tool

Concept maps can be generated manually or automatically. It is important to recognize differences of the two types of concept maps. The automatically generated concept maps are dynamic, interactive, and full of associations between the terms on the maps and the underlying documents. Through a specific concept mapping system, Visual Concept Explorer (VCE), this paper discusses how automatically generated concept maps are different from manually generated concept maps and how different applications and learning opportunities might be created with the automatically generated concept maps. The paper presents several examples of learning strategies that take advantages of the automatically generated concept maps for concept learning and exploration.

Performance Assessment of Computational Gridon Weather Indices from HOAPS Data

Long term rainfall analysis and prediction is a challenging task especially in the modern world where the impact of global warming is creating complications in environmental issues. These factors which are data intensive require high performance computational modeling for accurate prediction. This research paper describes a prototype which is designed and developed on grid environment using a number of coupled software infrastructural building blocks. This grid enabled system provides the demanding computational power, efficiency, resources, user-friendly interface, secured job submission and high throughput. The results obtained using sequential execution and grid enabled execution shows that computational performance has enhanced among 36% to 75%, for decade of climate parameters. Large variation in performance can be attributed to varying degree of computational resources available for job execution. Grid Computing enables the dynamic runtime selection, sharing and aggregation of distributed and autonomous resources which plays an important role not only in business, but also in scientific implications and social surroundings. This research paper attempts to explore the grid enabled computing capabilities on weather indices from HOAPS data for climate impact modeling and change detection.

Enzymatic Saccharification of Dilute Alkaline Pre-treated Microalgal (Tetraselmis suecica) Biomass for Biobutanol Production

Enzymatic saccharification of biomass for reducing sugar production is one of the crucial processes in biofuel production through biochemical conversion. In this study, enzymatic saccharification of dilute potassium hydroxide (KOH) pre-treated Tetraselmis suecica biomass was carried out by using cellulase enzyme obtained from Trichoderma longibrachiatum. Initially, the pre-treatment conditions were optimised by changing alkali reagent concentration, retention time for reaction, and temperature. The T. suecica biomass after pre-treatment was also characterized using Fourier Transform Infrared Spectra and Scanning Electron Microscope. These analyses revealed that the functional group such as acetyl and hydroxyl groups, structure and surface of T. suecica biomass were changed through pre-treatment, which is favourable for enzymatic saccharification process. Comparison of enzymatic saccharification of untreated and pre-treated microalgal biomass indicated that higher level of reducing sugar can be obtained from pre-treated T. suecica. Enzymatic saccharification of pre-treated T. suecica biomass was optimised by changing temperature, pH, and enzyme concentration to solid ratio ([E]/[S]). Highest conversion of carbohydrate into reducing sugar of 95% amounted to reducing sugar yield of 20 (wt%) from pre-treated T. suecica was obtained from saccharification, at temperature: 40°C, pH: 4.5 and [E]/[S] of 0.1 after 72 h of incubation. Hydrolysate obtained from enzymatic saccharification of pretreated T. suecica biomass was further fermented into biobutanol using Clostridium saccharoperbutyliticum as biocatalyst. The results from this study demonstrate a positive prospect of application of dilute alkaline pre-treatment to enhance enzymatic saccharification and biobutanol production from microalgal biomass.

Routing Load Analysis over 802.11 DCF of Reactive Routing Protocols DSR and DYMO

The Mobile Ad-hoc Network (MANET) is a collection of self-configuring and rapidly deployed mobile nodes (routers) without any central infrastructure. Routing is one of the potential issues. Many routing protocols are reported but it is difficult to decide which one is best in all scenarios. In this paper on demand routing protocols DSR and DYMO based on IEEE 802.11 DCF MAC protocol are examined and characteristic summary of these routing protocols is presented. Their performance is analyzed and compared on performance measuring metrics throughput, dropped packets due to non availability of routes, duplicate RREQ generated for route discovery and normalized routing load by varying CBR data traffic load using QualNet 5.0.2 network simulator.

The Effect of High-speed Milling on Surface Roughness of Hardened Tool Steel

The objective of this research was to study factors, which were affected on surface roughness in high speed milling of hardened tool steel. Material used in the experiment was tool steel JIS SKD 61 that hardened on 60 ±2 HRC. Full factorial experimental design was conducted on 3 factors and 3 levels (3 3 designs) with 2 replications. Factors were consisted of cutting speed, feed rate, and depth of cut. The results showed that influenced factor affected to surface roughness was cutting speed, feed rate and depth of cut which showed statistical significant. Higher cutting speed would cause on better surface quality. On the other hand, higher feed rate would cause on poorer surface quality. Interaction of factor was found that cutting speed and depth of cut were significantly to surface quality. The interaction of high cutting speed associated with low depth of cut affected to better surface quality than low cutting speed and high depth of cut.

A Hybrid DEA Model for the Measurement of the Enviromental Performance

Data envelopment analysis (DEA) has gained great popularity in environmental performance measurement because it can provide a synthetic standardized environmental performance index when pollutants are suitably incorporated into the traditional DEA framework. Since some of the environmental performance indicators cannot be controlled by companies managers, it is necessary to develop the model in a way that it could be applied when discretionary and/or non-discretionary factors were involved. In this paper, we present a semi-radial DEA approach to measuring environmental performance, which consists of non-discretionary factors. The model, then, has been applied on a real case.

An Anomaly Detection Approach to Detect Unexpected Faults in Recordings from Test Drives

In the automotive industry test drives are being conducted during the development of new vehicle models or as a part of quality assurance of series-production vehicles. The communication on the in-vehicle network, data from external sensors, or internal data from the electronic control units is recorded by automotive data loggers during the test drives. The recordings are used for fault analysis. Since the resulting data volume is tremendous, manually analysing each recording in great detail is not feasible. This paper proposes to use machine learning to support domainexperts by preventing them from contemplating irrelevant data and rather pointing them to the relevant parts in the recordings. The underlying idea is to learn the normal behaviour from available recordings, i.e. a training set, and then to autonomously detect unexpected deviations and report them as anomalies. The one-class support vector machine “support vector data description” is utilised to calculate distances of feature vectors. SVDDSUBSEQ is proposed as a novel approach, allowing to classify subsequences in multivariate time series data. The approach allows to detect unexpected faults without modelling effort as is shown with experimental results on recordings from test drives.

Effect of Personalization on Students' Achievement and Gender Factor in Mathematics Education

The aim of this study is to point out whether personalization of mathematical word problems could affect student achievement or not. The research was applied on two-grades students at spring semester 2008-2009. Before the treatment, students personal data were taken and given to the computer. During the treatment, paper-based personalized problems and paper-based non personalized problems were prepared by computer as the same problems and then these problems were given to students. At the end of the treatment, students- opinion was taken. As a result of this research, it was found out that there were no significant differences between learners through personalized or non-personalized materials, and also there were no significant differences between gender through personalized and non-personalized problems. However, opinion of students was highly positive through the personalized problems.

Application of Process Approach to Evaluate the Information Security Risk and its Implementation in an Iranian Private Bank

Every organization is continually subject to new damages and threats which can be resulted from their operations or their goal accomplishment. Methods of providing the security of space and applied tools have been widely changed with increasing application and development of information technology (IT). From this viewpoint, information security management systems were evolved to construct and prevent reiterating the experienced methods. In general, the correct response in information security management systems requires correct decision making, which in turn requires the comprehensive effort of managers and everyone involved in each plan or decision making. Obviously, all aspects of work or decision are not defined in all decision making conditions; therefore, the possible or certain risks should be considered when making decisions. This is the subject of risk management and it can influence the decisions. Investigation of different approaches in the field of risk management demonstrates their progress from quantitative to qualitative methods with a process approach.

A Formal Implementation of Database Security

This paper is to investigate the impplementation of security mechanism in object oriented database system. Formal methods plays an essential role in computer security due to its powerful expressiveness and concise syntax and semantics. In this paper, both issues of specification and implementation in database security environment will be considered; and the database security is achieved through the development of an efficient implementation of the specification without compromising its originality and expressiveness.

Knowledge Representation and Retrieval in Design Project Memory

Knowledge sharing in general and the contextual access to knowledge in particular, still represent a key challenge in the knowledge management framework. Researchers on semantic web and human machine interface study techniques to enhance this access. For instance, in semantic web, the information retrieval is based on domain ontology. In human machine interface, keeping track of user's activity provides some elements of the context that can guide the access to information. We suggest an approach based on these two key guidelines, whilst avoiding some of their weaknesses. The approach permits a representation of both the context and the design rationale of a project for an efficient access to knowledge. In fact, the method consists of an information retrieval environment that, in the one hand, can infer knowledge, modeled as a semantic network, and on the other hand, is based on the context and the objectives of a specific activity (the design). The environment we defined can also be used to gather similar project elements in order to build classifications of tasks, problems, arguments, etc. produced in a company. These classifications can show the evolution of design strategies in the company.

Development of a Real-Time Energy Models for Photovoltaic Water Pumping System

This purpose of this paper is to develop and validate a model to accurately predict the cell temperature of a PV module that adapts to various mounting configurations, mounting locations, and climates while only requiring readily available data from the module manufacturer. Results from this model are also compared to results from published cell temperature models. The models were used to predict real-time performance from a PV water pumping systems in the desert of Medenine, south of Tunisia using 60-min intervals of measured performance data during one complete year. Statistical analysis of the predicted results and measured data highlight possible sources of errors and the limitations and/or adequacy of existing models, to describe the temperature and efficiency of PV-cells and consequently, the accuracy of performance of PV water pumping systems prediction models.

The Design and Implementation of Classifying Bird Sounds

This Classifying Bird Sounds (chip notes) project-s purpose is to reduce the unwanted noise from recorded bird sound chip notes, design a scheme to detect differences and similarities between recorded chip notes, and classify bird sound chip notes. The technologies of determining the similarities of sound waves have been used in communication, sound engineering and wireless sound applications for many years. Our research is focused on the similarity of chip notes, which are the sounds from different birds. The program we use is generated by Microsoft Cµ.