Using Knowledge Management and Critical Thinking to Understand Thai Perceptions and Decisions towards Work-Life Balance in a Multinational Software Development Firm

Work-life balance has been acknowledged and promoted for the sake of employee retention. It is essential for a manager to realize the human resources situation within a company to help employees work happily and perform at their best. This paper suggests knowledge management and critical thinking are useful to motivate employees to think about their work-life balance. A qualitative case study is presented, which aimed to discover the meaning of work-life balance-s meaning from the perspective of Thai knowledge workers and how it affects their decision-making towards work resignation. Results found three types of work-life balance dimensions; a work- life balance including a workplace and a private life setting, an organizational working life balance only, and a worklife balance only in a private life setting. These aspects all influenced the decision-making of the employees. Factors within a theme of an organizational work-life balance were involved with systematic administration, fair treatment, employee recognition, challenging assignments to gain working experience, assignment engagement, teamwork, relationship with superiors, and working environment, while factors concerning private life settings were about personal demands such as an increasing their salary or starting their own business.

Communication and Human Resource Management and its Compliance with Culture

According to the conception of personnel management, human resource management requires efficient use of human resources. This is ensured by various activities directed towards the area of management. Among these activities there are for example the recruitment of employees, development, strengthening of relations, mutual inspiring, implementation of correct working processes and systems used by individuals or groups.

Performance Characteristics of a Closed Circuit Cooling Tower with Multi Path

The experimental thermal performance of two heat exchangers in closed-wet cooling tower (CWCT) was investigated in this study. The test sections are heat exchangers which have multi path that is used as the entrance of cooling water and are consisting of bare-type copper tubes between 15.88mm and 19.05mm. The process fluids are the cooling water that flows from top part of heat exchanger to bottom side in the inner side of tube, and spray water that flows gravitational direction in the outer side of it. Air contacts its outer side of that as it counterflows. Heat and mass transfer coefficients and cooling capacity were calculated with variations of process fluids, multi path and different diameter tubes to figure out the performance of characteristics of CWCT. The main results were summarized as follows: The results show this experiment is reliable with values of heat and mass transfer coefficients comparing to values of correlations. Heat and mass transfer coefficients and cooling capacity of two paths are higher than these with one path using 15.88 and 19.05mm tubes. Cooling capacity per unit volume with 15.88mm tube using one and two paths are higher than 19.05mm tube due to increase of surface area per unit volume.

Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons in the Northwest of the Persian Gulf

This study investigated the presence of polycyclic aromatic hydrocarbons (PAHs) in the sediments of the Musa Bay (around the PETZONE coastal area) from Feb 2010 to Jun 2010. Concentrations of PAHs recorded in the Musa Bay sediments ranged from 537.89 to 26,659.06 ng/g dry weight with a mean value of 3990.74 ng/g. the highest concentration of PAHs was observed at station 4, which is located near the aromatic outlet of Imam Khomeini petrochemical company (station 4: BI-PC Aromatic effluent outlet) in which its concentration level was more than the NOAA sediment quality guideline value (ERL= 4022 ng/g dry weight). Owing to the concentration of PAHs in the study area, its concentration level was still meet the NOAA sediment quality guideline value (ERL: 4022 ng/g dry weight); however, according to the PELq factor, slightly adverse biological effects are associated with the exposure to PAHs levels in the study area (0.1< PELq= 0.24 > 0.5).

A Shape Optimization Method in Viscous Flow Using Acoustic Velocity and Four-step Explicit Scheme

The purpose of this study is to derive optimal shapes of a body located in viscous flows by the finite element method using the acoustic velocity and the four-step explicit scheme. The formulation is based on an optimal control theory in which a performance function of the fluid force is introduced. The performance function should be minimized satisfying the state equation. This problem can be transformed into the minimization problem without constraint conditions by using the adjoint equation with adjoint variables corresponding to the state equation. The performance function is defined by the drag and lift forces acting on the body. The weighted gradient method is applied as a minimization technique, the Galerkin finite element method is used as a spatial discretization and the four-step explicit scheme is used as a temporal discretization to solve the state equation and the adjoint equation. As the interpolation, the orthogonal basis bubble function for velocity and the linear function for pressure are employed. In case that the orthogonal basis bubble function is used, the mass matrix can be diagonalized without any artificial centralization. The shape optimization is performed by the presented method.

Dynamics of Functional Composition of a Brazilian Tropical Forest in Response to Drought Stress

The aim of this study was to examine the dynamics of functional composition of a non flooded Amazonian forest in response to drought stress in terms of diameter growth, recruitment and mortality. The survey was carried out in the continuous forest of the Biological dynamics of forest fragments project 90 km outside the city of Manaus, state of Amazonas Brazil. All stems >10 cm dbh where identified to species level and monitored in 18 one hectare permanent sample plots from 1981 to 2004.For statistical analysis all species where aggregated in three ecological guilds. Two distinct drought events occurred in 1983 and 1997. Results showed that more early successional species performed better than later successional ones. Response was significant for both events but for the 1997 event this was more pronounced possibly because of the fact that the event was in the middle of the dry rather than the wet period as was the 1983 one.

Family Bonding and Self-Concept: An Indirect Effect Mediated by School Experiences among Students

School experiences, family bonding and self-concept had always been a crucial factor in influencing all aspects of a student-s development. The purpose of this study is to develop and to validate a priori model of self-concept among students. The study was tested empirically using Structural Equation Modeling (SEM) and Confirmatory Factor Analysis (CFA) to validate the structural model. To address these concerns, 1167 students were randomly selected and utilized the Cognitive Psycho-Social University of Malaya instrument (2009).Resulted demonstrated there is indirect effect from family bonding to self-concept through school experiences among secondary school students as a mediator. Besides school experiences, there is a direct effect from family bonding to self-concept and family bonding to school experiences among students.

Higher Frequency Modeling of Synchronous Exciter Machines by Equivalent Circuits and Transfer Functions

In this article the influence of higher frequency effects in addition to a special damper design on the electrical behavior of a synchronous generator main exciter machine is investigated. On the one hand these machines are often highly stressed by harmonics from the bridge rectifier thus facing additional eddy current losses. On the other hand the switching may cause the excitation of dangerous voltage peaks in resonant circuits formed by the diodes of the rectifier and the commutation reactance of the machine. Therefore modern rotating exciters are treated like synchronous generators usually modeled with a second order equivalent circuit. Hence the well known Standstill Frequency Response Test (SSFR) method is applied to a test machine in order to determine parameters for the simulation. With these results it is clearly shown that higher frequencies have a strong impact on the conventional equivalent circuit model. Because of increasing field displacement effects in the stranded armature winding the sub-transient reactance is even smaller than the armature leakage at high frequencies. As a matter of fact this prevents the algorithm to find an equivalent scheme. This issue is finally solved using Laplace transfer functions fully describing the transient behavior at the model ports.

Artificial Voltage-Controlled Capacitance and Inductance using Voltage-Controlled Transconductance

In this paper, a technique is proposed to implement an artificial voltage-controlled capacitance or inductance which can replace the well-known varactor diode in many applications. The technique is based on injecting the current of a voltage-controlled current source onto a fixed capacitor or inductor. Then, by controlling the transconductance of the current source by an external bias voltage, a voltage-controlled capacitive or inductive reactance is obtained. The proposed voltage-controlled reactance devices can be designed to work anywhere in the frequency spectrum. Practical circuits for the proposed voltage-controlled reactances are suggested and simulated.

Evolutionary Eigenspace Learning using CCIPCA and IPCA for Face Recognition

Traditional principal components analysis (PCA) techniques for face recognition are based on batch-mode training using a pre-available image set. Real world applications require that the training set be dynamic of evolving nature where within the framework of continuous learning, new training images are continuously added to the original set; this would trigger a costly continuous re-computation of the eigen space representation via repeating an entire batch-based training that includes the old and new images. Incremental PCA methods allow adding new images and updating the PCA representation. In this paper, two incremental PCA approaches, CCIPCA and IPCA, are examined and compared. Besides, different learning and testing strategies are proposed and applied to the two algorithms. The results suggest that batch PCA is inferior to both incremental approaches, and that all CCIPCAs are practically equivalent.

Experimental Investigation on the Effect of CO2 and WAG Injection on Permeability Reduction Induced by Asphaltene Precipitation in Light Oil

Permeability reduction induced by asphaltene precipitation during gas injection is one of the serious problems in the oil industry. This problem can lead to formation damage and decrease the oil production rate. In this work, Malaysian light oil sample has been used to investigate the effect CO2 injection and Water Alternating Gas (WAG) injection on permeability reduction. In this work, dynamic core flooding experiments were conducted to study the effect of CO2 and WAG injection on the amount of asphaltene precipitated. Core properties after displacement were inspected for any permeability reduction to study the effect of asphaltene precipitation on rock properties. The results showed that WAG injection gave less asphaltene precipitation and formation damage compared to CO2 injection. The study suggested that WAG injection can be one of the important factors of managing asphaltene precipitation.

Certain Data Dimension Reduction Techniques for application with ANN based MCS for Study of High Energy Shower

Cosmic showers, from their places of origin in space, after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of EAS and similar High Energy Particle Showers involve a plethora of experimental setups with certain constraints for which soft-computational tools like Artificial Neural Network (ANN)s can be adopted. The optimality of ANN classifiers can be enhanced further by the use of Multiple Classifier System (MCS) and certain data - dimension reduction techniques. This work describes the performance of certain data dimension reduction techniques like Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Self Organizing Map (SOM) approximators for application with an MCS formed using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN). The data inputs are obtained from an array of detectors placed in a circular arrangement resembling a practical detector grid which have a higher dimension and greater correlation among themselves. The PCA, ICA and SOM blocks reduce the correlation and generate a form suitable for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.

Concept Indexing using Ontology and Supervised Machine Learning

Nowadays, ontologies are the only widely accepted paradigm for the management of sharable and reusable knowledge in a way that allows its automatic interpretation. They are collaboratively created across the Web and used to index, search and annotate documents. The vast majority of the ontology based approaches, however, focus on indexing texts at document level. Recently, with the advances in ontological engineering, it became clear that information indexing can largely benefit from the use of general purpose ontologies which aid the indexing of documents at word level. This paper presents a concept indexing algorithm, which adds ontology information to words and phrases and allows full text to be searched, browsed and analyzed at different levels of abstraction. This algorithm uses a general purpose ontology, OntoRo, and an ontologically tagged corpus, OntoCorp, both developed for the purpose of this research. OntoRo and OntoCorp are used in a two-stage supervised machine learning process aimed at generating ontology tagging rules. The first experimental tests show a tagging accuracy of 78.91% which is encouraging in terms of the further improvement of the algorithm.

Material Defects Identification in Metal Ceramic Fixed Partial Dentures by En-Face Polarization Sensitive Optical Coherence Tomography

The fixed partial dentures are mainly used in the frontal part of the dental arch because of their great esthetics. There are several factors that are associated with the stress state created in ceramic restorations, including: thickness of ceramic layers, mechanical properties of the materials, elastic modulus of the supporting substrate material, direction, magnitude and frequency of applied load, size and location of occlusal contact areas, residual stresses induced by processing or pores, restoration-cement interfacial defects and environmental defects. The purpose of this study is to evaluate the capability of Polarization Sensitive Optical Coherence Tomography (PSOCT) in detection and analysis of possible material defects in metal-ceramic and integral ceramic fixed partial dentures. As a conclusion, it is important to have a non invasive method to investigate fixed partial prostheses before their insertion in the oral cavity in order to satisfy the high stress requirements and the esthetic function.

Highly Efficient White Light-emitting Diodes Based on Layered Quantum Dot-Phosphor Nanocomposites as Converting Materials

This paper reports on the enhanced photoluminescence (PL) of nanocomposites through the layered structuring of phosphor and quantum dot (QD). Green phosphor of Sr2SiO4:Eu, red QDs of CdSe/CdS/CdZnS/ZnS core-multishell, and thermo-curable resin were used for this study. Two kinds of composite (layered and mixed) were prepared, and the schemes for optical energy transfer between QD and phosphor were suggested and investigated based on PL decay characteristics. It was found that the layered structure is more effective than the mixed one in the respects of PL intensity, PL decay and thermal loss. When this layered nanocomposite (QDs on phosphor) is used to make white light emitting diode (LED), the brightness is increased by 37 %, and the color rendering index (CRI) value is raised to 88.4 compared to the mixed case of 80.4.

Using HMM-based Classifier Adapted to Background Noises with Improved Sounds Features for Audio Surveillance Application

Discrimination between different classes of environmental sounds is the goal of our work. The use of a sound recognition system can offer concrete potentialities for surveillance and security applications. The first paper contribution to this research field is represented by a thorough investigation of the applicability of state-of-the-art audio features in the domain of environmental sound recognition. Additionally, a set of novel features obtained by combining the basic parameters is introduced. The quality of the features investigated is evaluated by a HMM-based classifier to which a great interest was done. In fact, we propose to use a Multi-Style training system based on HMMs: one recognizer is trained on a database including different levels of background noises and is used as a universal recognizer for every environment. In order to enhance the system robustness by reducing the environmental variability, we explore different adaptation algorithms including Maximum Likelihood Linear Regression (MLLR), Maximum A Posteriori (MAP) and the MAP/MLLR algorithm that combines MAP and MLLR. Experimental evaluation shows that a rather good recognition rate can be reached, even under important noise degradation conditions when the system is fed by the convenient set of features.

Elections, Checks and Balances, and Government Expenditures: Empirical Evidence for Japan, South Korea, and Taiwan

Previous studies on political budget cycles (PBCs) implicitly assume the executive has full discretion power over fiscal policy, neglecting the role of checks and balances of the legislature. This paper goes beyond traditional PBCs models and sheds light on the case study of Japan, South Korea, and Taiwan over the 1988-2007 periods. Based on the results, we find no evidence of electoral impacts on the public expenditures in South Korean and Taiwan's congressional elections. We also noted that PBCs are found on Taiwan-s government expenditures during our sample periods. Furthermore, the results also show that Japan-s legislature has a significant checks and balances on government-s expenditures. However, empirical results show that the legislature veto player in Taiwan neither has effect on the reduction of public expenditures, nor has the moderating effect over Taiwan-s political budget cycles, albeit that they are statistically insignificant.We suggest that the existence of PBCs in Taiwan is due to a weaker systemof checks and balances. Our conjecture is that Taiwan either has no legislative veto player or has observed low compliance to the law during the time period examined in our study.

Implementation of an Innovative Simplified Sliding Mode Observer-Based Robust Fault Detection in a Drum Boiler System

One of the robust fault detection filter (RFDF) designing method is based on sliding-mode theory. The main purpose of our study is to introduce an innovative simplified reference residual model generator to formulate the RFDF as a sliding-mode observer without any manipulation package or transformation matrix, through which the generated residual signals can be evaluated. So the proposed design is more explicit and requires less design parameters in comparison with approaches requiring changing coordinates. To the best author's knowledge, this is the first time that the sliding mode technique is applied to detect actuator and sensor faults in a real boiler. The designing procedure is proposed in a drum boiler in Synvendska Kraft AB Plant in Malmo, Sweden as a multivariable and strongly coupled system. It is demonstrated that both sensor and actuator faults can robustly be detected. Also sensor faults can be diagnosed and isolated through this method.

A Distributed Weighted Cluster Based Routing Protocol for Manets

Mobile ad-hoc networks (MANETs) are a form of wireless networks which do not require a base station for providing network connectivity. Mobile ad-hoc networks have many characteristics which distinguish them from other wireless networks which make routing in such networks a challenging task. Cluster based routing is one of the routing schemes for MANETs in which various clusters of mobile nodes are formed with each cluster having its own clusterhead which is responsible for routing among clusters. In this paper we have proposed and implemented a distributed weighted clustering algorithm for MANETs. This approach is based on combined weight metric that takes into account several system parameters like the node degree, transmission range, energy and mobility of the nodes. We have evaluated the performance of proposed scheme through simulation in various network situations. Simulation results show that proposed scheme outperforms the original distributed weighted clustering algorithm (DWCA).

Thermodynamic Study of Hot Potassium Carbonate Solution Using Aspen Plus

This paper presents a study on the thermodynamics and transport properties of hot potassium carbonate aqueous system (HPC) using electrolyte non-random two liquid, (ELECNRTL) model. The operation conditions are varied to determine the system liquid phase stability range at the standard and critical conditions. A case study involving 30 wt% K2CO3, H2O standard system at pressure of 1 bar and temperature range from 280.15 to 366.15 K has been studied. The estimated solubility index, viscosity, water activity, and density which obtained from the simulation showed a good agreement with the experimental work. Furthermore, the saturation temperature of the solution has been estimated.