Effect of Helium-Argon Mixtures on the Heat Transfer and Fluid Flow in Gas Tungsten Arc Welding

A transient finite element model has been developed to study the heat transfer and fluid flow during spot Gas Tungsten Arc Welding (GTAW) on stainless steel. Temperature field, fluid velocity and electromagnetic fields are computed inside the cathode, arc-plasma and anode using a unified MHD formulation. The developed model is then used to study the influence of different helium-argon gas mixtures on both the energy transferred to the workpiece and the time evolution of the weld pool dimensions. It is found that the addition of helium to argon increases the heat flux density on the weld axis by a factor that can reach 6.5. This induces an increase in the weld pool depth by a factor of 3. It is also found that the addition of only 10% of argon to helium decreases considerably the weld pool depth, which is due to the electrical conductivity of the mixture that increases significantly when argon is added to helium.

Evaluation of Newly Developed Dot-ELISA Test for Identification of Naja-naja sumantrana and Calloselasma rhodostoma Venom Antigens

Snake bite cases in Malaysia most often involve the species Naja-naja and Calloselasma rhodostoma. In keeping with the need for a rapid snake venom detection kit in a clinical setting, plate and dot-ELISA test for the venoms of Naja-naja sumatrana, Calloselasma rhodostoma and the cobra venom fraction V antigen was developed. Polyclonal antibodies were raised and further used to prepare the reagents for the dot-ELISA test kit which was tested in mice, rabbit and virtual human models. The newly developed dot- ELISA kit was able to detect a minimum venom concentration of 244ng/ml with cross reactivity of one antibody type. The dot-ELISA system was sensitive and specific for all three snake venom types in all tested animal models. The lowest minimum venom concentration detectable was in the rabbit model, 244ng/ml of the cobra venom fraction V antigen. The highest minimum venom concentration was in mice, 1953ng/ml against a multitude of venoms. The developed dot-ELISA system for the detection of three snake venom types was successful with a sensitivity of 95.8% and specificity of 97.9%.

A Flexible Flowshop Scheduling Problem with Machine Eligibility Constraint and Two Criteria Objective Function

This research deals with a flexible flowshop scheduling problem with arrival and delivery of jobs in groups and processing them individually. Due to the special characteristics of each job, only a subset of machines in each stage is eligible to process that job. The objective function deals with minimization of sum of the completion time of groups on one hand and minimization of sum of the differences between completion time of jobs and delivery time of the group containing that job (waiting period) on the other hand. The problem can be stated as FFc / rj , Mj / irreg which has many applications in production and service industries. A mathematical model is proposed, the problem is proved to be NPcomplete, and an effective heuristic method is presented to schedule the jobs efficiently. This algorithm can then be used within the body of any metaheuristic algorithm for solving the problem.

Idiopathic Constipation can be Subdivided in Clinical Subtypes: Data Mining by Cluster Analysis on a Population based Study

The prevalence of non organic constipation differs from country to country and the reliability of the estimate rates is uncertain. Moreover, the clinical relevance of subdividing the heterogeneous functional constipation disorders into pre-defined subgroups is largely unknown.. Aim: to estimate the prevalence of constipation in a population-based sample and determine whether clinical subgroups can be identified. An age and gender stratified sample population from 5 Italian cities was evaluated using a previously validated questionnaire. Data mining by cluster analysis was used to determine constipation subgroups. Results: 1,500 complete interviews were obtained from 2,083 contacted households (72%). Self-reported constipation correlated poorly with symptombased constipation found in 496 subjects (33.1%). Cluster analysis identified four constipation subgroups which correlated to subgroups identified according to pre-defined symptom criteria. Significant differences in socio-demographics and lifestyle were observed among subgroups.

A Critical Study of Media Profiling on Society-s Social Problems from a British Perspective

This article explores the sociological perspectives on social problems and the role of the media which has a delicate role to tread in balancing its duty to the public and the victim Whilst social problems have objective conditions, it is the subjective definition of such problems that ensure which social problem comes to the fore and which doesn-t. Further it explores the roles and functions of policymakers when addressing social problems and the impact of the inception of media profiling as well as the advantages and disadvantages of media profiling towards social problems. It focuses on the inception of media profiling due to its length and a follow up article will explore how current media profiling towards social problems have evolved since its inception.

Transcutaneous Inductive Powering Links Based on ASK Modulation Techniques

This paper presented a modified efficient inductive powering link based on ASK modulator and proposed efficient class- E power amplifier. The design presents the external part which is located outside the body to transfer power and data to the implanted devices such as implanted Microsystems to stimulate and monitoring the nerves and muscles. The system operated with low band frequency 10MHZ according to industrial- scientific – medical (ISM) band to avoid the tissue heating. For external part, the modulation index is 11.1% and the modulation rate 7.2% with data rate 1 Mbit/s assuming Tbit = 1us. The system has been designed using 0.35-μm fabricated CMOS technology. The mathematical model is given and the design is simulated using OrCAD P Spice 16.2 software tool and for real-time simulation, the electronic workbench MULISIM 11 has been used.

Design of Thermal Control Subsystem for TUSAT Telecommunication Satellite

TUSAT is a prospective Turkish Communication Satellite designed for providing mainly data communication and broadcasting services through Ku-Band and C-Band channels. Thermal control is a vital issue in satellite design process. Therefore, all satellite subsystems and equipments should be maintained in the desired temperature range from launch to end of maneuvering life. The main function of the thermal control is to keep the equipments and the satellite structures in a given temperature range for various phases and operating modes of spacecraft during its lifetime. This paper describes the thermal control design which uses passive and active thermal control concepts. The active thermal control is based on heaters regulated by software via thermistors. Alternatively passive thermal control composes of heat pipes, multilayer insulation (MLI) blankets, radiators, paints and surface finishes maintaining temperature level of the overall carrier components within an acceptable value. Thermal control design is supported by thermal analysis using thermal mathematical models (TMM).

Rethinking Research for Genetically Modified (GM) Food

This paper suggests a rethinking of the existing research about Genetically Modified (GM) food. Since the first batch of GM food was commercialised in the UK market, GM food rapidly received and lost media attention in the UK. Disagreement on GM food policy between the US and the EU has also drawn scholarly attention to this issue. Much research has been carried out intending to understand people-s views about GM food and the shaping of these views. This paper was based on the data collected in twenty-nine semi-structured interviews, which were examined through Erving Goffman-s idea of self-presentation in interactions to suggest that the existing studies investigating “consumer attitudes" towards GM food have only considered the “front stage" in the dramaturgic metaphor. This paper suggests that the ways in which people choose to present themselves when participating these studies should be taken into account during the data analysis.

Enhancing the Connectedness in Ad–hoc Mesh Networks using the Terranet Technology

This paper simulates the ad-hoc mesh network in rural areas, where such networks receive great attention due to their cost, since installing the infrastructure for regular networks in these areas is not possible due to the high cost. The distance between the communicating nodes is the most obstacles that the ad-hoc mesh network will face. For example, in Terranet technology, two nodes can communicate if they are only one kilometer far from each other. However, if the distance between them is more than one kilometer, then each node in the ad-hoc mesh networks has to act as a router that forwards the data it receives to other nodes. In this paper, we try to find the critical number of nodes which makes the network fully connected in a particular area, and then propose a method to enhance the intermediate node to accept to be a router to forward the data from the sender to the receiver. Much work was done on technological changes on peer to peer networks, but the focus of this paper will be on another feature which is to find the minimum number of nodes needed for a particular area to be fully connected and then to enhance the users to switch on their phones and accept to work as a router for other nodes. Our method raises the successful calls to 81.5% out of 100% attempt calls.

The Islamic Element of Al-‘Adl in Critical Thinking: the Perception of Muslim Engineering Undergraduates in Malaysia

The element of justice or al-‘adl in the context of Islamic critical thinking deals with the notion of justice in a thinking process which critically rationalizes the truth in a fair and objective manner with no irrelevant interference that can jeopardize a sound judgment. This Islamic axiological element is vital in technological decision making as it addresses the issues of religious values and ethics that are primarily set to fulfill the purpose of human life on earth. The main objective of this study was to examine and analyze the perception of Muslim engineering students in Malaysian higher education institutions towards the concept of al-‘adl as an essential element of Islamic critical thinking. The study employed mixed methods approach that comprises data collection from the questionnaire survey and the interview responses. A total of 557 Muslim engineering undergraduates from six Malaysian universities participated in the study. The study generally indicated that Muslim engineering undergraduates in the higher institutions have rather good comprehension and consciousness for al-‘adl with a slight awareness on the importance of objective thinking. Nonetheless there were a few items on the concept that have implied a comparatively low perception on the rational justice in Islam as the means to grasp the ultimate truth.

AGV Guidance System: An Application of Simple Active Contour for Visual Tracking

In this paper, a simple active contour based visual tracking algorithm is presented for outdoor AGV application which is currently under development at the USM robotic research group (URRG) lab. The presented algorithm is computationally low cost and able to track road boundaries in an image sequence and can easily be implemented on available low cost hardware. The proposed algorithm used an active shape modeling using the B-spline deformable template and recursive curve fitting method to track the current orientation of the road.

A Comparative Study of Electrical Transport Phenomena in Ultrathin vs. Nanoscale SOI MOSFETs Devices

Ultrathin (UTD) and Nanoscale (NSD) SOI-MOSFET devices, sharing a similar W/L but with a channel thickness of 46nm and 1.6nm respectively, were fabricated using a selective “gate recessed” process on the same silicon wafer. The electrical transport characterization at room temperature has shown a large difference between the two kinds of devices and has been interpreted in terms of a huge unexpected series resistance. Electrical characteristics of the Nanoscale device, taken in the linear region, can be analytically derived from the ultrathin device ones. A comparison of the structure and composition of the layers, using advanced techniques such as Focused Ion Beam (FIB) and High Resolution TEM (HRTEM) coupled with Energy Dispersive X-ray Spectroscopy (EDS), contributes an explanation as to the difference of transport between the devices.

Kernel’s Parameter Selection for Support Vector Domain Description

Support Vector Domain Description (SVDD) is one of the best-known one-class support vector learning methods, in which one tries the strategy of using balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. As all kernel-based learning algorithms its performance depends heavily on the proper choice of the kernel parameter. This paper proposes a new approach to select kernel's parameter based on maximizing the distance between both gravity centers of normal and abnormal classes, and at the same time minimizing the variance within each class. The performance of the proposed algorithm is evaluated on several benchmarks. The experimental results demonstrate the feasibility and the effectiveness of the presented method.

A Novel Method for Blood Glucose Measurement by Noninvasive Technique Using Laser

A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on atomic gas (He-Ne) laser operating at 632.8nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively.

A New Velocity Expression for Open Channel and its Application to Lyari River

In this communication an expression for mean velocity of waste flow via an open channel is proposed which is an improvement over Manning formula. The discharges, storages and depths are computed at all locations of the Lyari river by utilizing proposed expression. The results attained through proposed expression are in good agreement with the observed data and better than those acquired using Manning formula.

Heuristic Set-Covering-Based Postprocessing for Improving the Quine-McCluskey Method

Finding the minimal logical functions has important applications in the design of logical circuits. This task is solved by many different methods but, frequently, they are not suitable for a computer implementation. We briefly summarise the well-known Quine-McCluskey method, which gives a unique procedure of computing and thus can be simply implemented, but, even for simple examples, does not guarantee an optimal solution. Since the Petrick extension of the Quine-McCluskey method does not give a generally usable method for finding an optimum for logical functions with a high number of values, we focus on interpretation of the result of the Quine-McCluskey method and show that it represents a set covering problem that, unfortunately, is an NP-hard combinatorial problem. Therefore it must be solved by heuristic or approximation methods. We propose an approach based on genetic algorithms and show suitable parameter settings.

Probabilistic Method of Wind Generation Placement for Congestion Management

Wind farms (WFs) with high level of penetration are being established in power systems worldwide more rapidly than other renewable resources. The Independent System Operator (ISO), as a policy maker, should propose appropriate places for WF installation in order to maximize the benefits for the investors. There is also a possibility of congestion relief using the new installation of WFs which should be taken into account by the ISO when proposing the locations for WF installation. In this context, efficient wind farm (WF) placement method is proposed in order to reduce burdens on congested lines. Since the wind speed is a random variable and load forecasts also contain uncertainties, probabilistic approaches are used for this type of study. AC probabilistic optimal power flow (P-OPF) is formulated and solved using Monte Carlo Simulations (MCS). In order to reduce computation time, point estimate methods (PEM) are introduced as efficient alternative for time-demanding MCS. Subsequently, WF optimal placement is determined using generation shift distribution factors (GSDF) considering a new parameter entitled, wind availability factor (WAF). In order to obtain more realistic results, N-1 contingency analysis is employed to find the optimal size of WF, by means of line outage distribution factors (LODF). The IEEE 30-bus test system is used to show and compare the accuracy of proposed methodology.

State Programs Analysis and Social Crisis Management in the Republic of Kazakhstan: A Descriptive Study

The article is about government programs and projects and their description which are aimed at improving the socioeconomic situation in the Republic of Kazakhstan. A brief historical overview, as well as information about current socio-economic, political and transitional contexts of the country are provided. Two theories were described in the article to inform this descriptive study. According to the United Nation's Development Reports for 2005 and 2011, the country's human development index (HDI) rose by several points despite the socio-economic and political imbalances taking place in the republic since it gained its independence in 1991. It is stated in the article that government support programs are one of the crucial factors that increase the population welfare which in its turn may lead to reduction of social crisis processes in the country.

A Cascaded Fuzzy Inference System for Dynamic Online Portals Customization

In our modern world, more physical transactions are being substituted by electronic transactions (i.e. banking, shopping, and payments), many businesses and companies are performing most of their operations through the internet. Instead of having a physical commerce, internet visitors are now adapting to electronic commerce (e-Commerce). The ability of web users to reach products worldwide can be greatly benefited by creating friendly and personalized online business portals. Internet visitors will return to a particular website when they can find the information they need or want easily. Dealing with this human conceptualization brings the incorporation of Artificial/Computational Intelligence techniques in the creation of customized portals. From these techniques, Fuzzy-Set technologies can make many useful contributions to the development of such a human-centered endeavor as e-Commerce. The main objective of this paper is the implementation of a Paradigm for the Intelligent Design and Operation of Human-Computer interfaces. In particular, the paradigm is quite appropriate for the intelligent design and operation of software modules that display information (such Web Pages, graphic user interfaces GUIs, Multimedia modules) on a computer screen. The human conceptualization of the user personal information is analyzed throughout a Cascaded Fuzzy Inference (decision-making) System to generate the User Ascribe Qualities, which identify the user and that can be used to customize portals with proper Web links.

A Cooperative Weighted Discriminator Energy Detector Technique in Fading Environment

The need in cognitive radio system for a simple, fast, and independent technique to sense the spectrum occupancy has led to the energy detection approach. Energy detector is known by its dependency on noise variation in the system which is one of its major drawbacks. In this paper, we are aiming to improve its performance by utilizing a weighted collaborative spectrum sensing, it is similar to the collaborative spectrum sensing methods introduced previously in the literature. These weighting methods give more improvement for collaborative spectrum sensing as compared to no weighting case. There is two method proposed in this paper: the first one depends on the channel status between each sensor and the primary user while the second depends on the value of the energy measured in each sensor.