PI Control for Positive Output Elementary Super Lift Luo Converter

The object of this paper is to design and analyze a proportional – integral (PI) control for positive output elementary super lift Luo converter (POESLLC), which is the start-of-the-art DC-DC converter. The positive output elementary super lift Luo converter performs the voltage conversion from positive source voltage to positive load voltage. This paper proposes a development of PI control capable of providing the good static and dynamic performance compared to proportional – integralderivative (PID) controller. Using state space average method derives the dynamic equations describing the positive output elementary super lift luo converter and PI control is designed. The simulation model of the positive output elementary super lift Luo converter with its control circuit is implemented in Matlab/Simulink. The PI control for positive output elementary super lift Luo converter is tested for transient region, line changes, load changes, steady state region and also for components variations.

Mechanical Evaluation of Stainless Steel and Titanium Dynamic Hip Screws for Trochanteric Fracture

This study aimed to present the mechanical performance evaluation of the dynamic hip screw (DHS) for trochanteric fracture by means of finite element method. The analyses were performed based on stainless steel and titanium implant material definitions at various stages of bone healing and including implant removal. The assessment of the mechanical performance used two parameters, von Mises stress to evaluate the strength of bone and implant and elastic strain to evaluate fracture stability. The results show several critical aspects of dynamic hip screw for trochanteric fracture stabilization. In the initial stage of bone healing process, partial weight bearing should be applied to avoid the implant failure. In the late stage of bone healing, stainless steel implant should be removed.

Real-Time Defects Detection Algorithm for High-Speed Steel Bar in Coil

This paper presents a real-time defect detection algorithm for high-speed steel bar in coil. Because the target speed is very high, proposed algorithm should process quickly the large volumes of image for real-time processing. Therefore, defect detection algorithm should satisfy two conflicting requirements of reducing the processing time and improving the efficiency of defect detection. To enhance performance of detection, edge preserving method is suggested for noise reduction of target image. Finally, experiment results show that the proposed algorithm guarantees the condition of the real-time processing and accuracy of detection.

Copper Contamination in the Sediments of Northern Kaohsiung Harbor, Taiwan

The distribution, enrichment, accumulation, and potential ecological risk of copper (Cu) in the surface sediments of northern Kaohsiung Harbor, Taiwan were investigated. Sediment samples from 12 locations of northern Kaohsiung Harbor were collected and characterized for Cu, aluminum, water content, organic matter, total nitrogen, total phosphorous, total grease and grain size. Results showed that the Cu concentrations varied from 6.9–244 mg/kg with an average of 109±66 mg/kg. The spatial distribution of Cu reveals that the Cu concentration is relatively high in the river mouth region, and gradually diminishes toward the harbor entrance region. This indicates that upstream industrial and municipal wastewater discharges along the river bank are major sources of Cu pollution. Results from the enrichment factor and geo-accumulation index analyses imply that the sediments collected from the river mouth can be characterized between moderate and moderately severe degree enrichment and between none to medium and moderate accumulation of Cu, respectively. However, results of potential ecological risk index indicate that the sediment has low ecological potential risk.

Minimizing Risk Costs through Optimal Responses in NPD Projects

In rapidly changing market environment, firms are investing a lot of time and resources into new product development (NPD) projects to make profit and to obtain competitive advantage. However, failure rate of NPD projects is becoming high due to various internal and external risks which hinder successful NPD projects. To reduce the failure rate, it is critical that risks have to be managed effectively and efficiently through good strategy, and treated by optimal responses to minimize risk cost. Four strategies are adopted to handle the risks in this study. The optimal responses are characterized by high reduction of risk costs with high efficiency. This study suggests a framework to decide the optimal responses considering the core risks, risk costs, response efficiency and response costs for successful NPD projects. Both binary particles warm optimization (BPSO) and multi-objective particle swarm optimization (MOPSO) methods are mainly used in the framework. Although several limitations exist in use for real industries, the frame work shows good strength for handling the risks with highly scientific ways through an example.

Collaboration of Multi-Agent and Hyper-Heuristics Systems for Production Scheduling Problem

This paper introduces a framework based on the collaboration of multi agent and hyper-heuristics to find a solution of the real single machine production problem. There are many techniques used to solve this problem. Each of it has its own advantages and disadvantages. By the collaboration of multi agent system and hyper-heuristics, we can get more optimal solution. The hyper-heuristics approach operates on a search space of heuristics rather than directly on a search space of solutions. The proposed framework consists of some agents, i.e. problem agent, trainer agent, algorithm agent (GPHH, GAHH, and SAHH), optimizer agent, and solver agent. Some low level heuristics used in this paper are MRT, SPT, LPT, EDD, LDD, and MON

The Statistical Properties of Filtered Signals

In this paper, the statistical properties of filtered or convolved signals are considered by deriving the resulting density functions as well as the exact mean and variance expressions given a prior knowledge about the statistics of the individual signals in the filtering or convolution process. It is shown that the density function after linear convolution is a mixture density, where the number of density components is equal to the number of observations of the shortest signal. For circular convolution, the observed samples are characterized by a single density function, which is a sum of products.

Integrating Hedgerow into Town Planning: A Framework for Sustainable Residential Development

The vast rural landscape in the southern United States is conspicuously characterized by the hedgerow trees or groves. The patchwork landscape of fields surrounded by high hedgerows is a traditional and familiar feature of the American countryside. Hedgerows are in effect linear strips of trees, groves, or woodlands, which are often critical habitats for wildlife and important for the visual quality of the landscape. As landscape interfaces, hedgerows define the spaces in the landscape, give the landscape life and meaning, and enrich ecologies and cultural heritages of the American countryside. Although hedgerows were originally intended as fences and to mark property and townland boundaries, they are not merely the natural or man-made additions to the landscape--they have gradually become “naturalized" into the landscape, deeply rooted in the rural culture, and now formed an important component of the southern American rural environment. However, due to the ever expanding real estate industry and high demand for new residential development, substantial areas of authentic hedgerow landscape in the southern United States are being urbanized. Using Hudson Farm as an example, this study illustrated guidelines of how hedgerows can be integrated into town planning as green infrastructure and landscape interface to innovate and direct sustainable land use, and suggest ways in which such vernacular landscapes can be preserved and integrated into new development without losing their contextual inspiration.

Mitigating the Clipping Noise by Using the Oversampling Scheme in OFDM Systems

In an Orthogonal Frequency Division Multiplexing (OFDM) systems, the Peak to Average power Ratio (PAR) is high. The clipping signal scheme is a useful and simple method to reduce the PAR. However, it introduces additional noise that degrades the systems performance. We propose an oversampling scheme to deal with the received signal in order to reduce the clipping noise by using Finite Impulse Response (FIR) filter. Coefficients of filter are obtained by correlation function of the received signal and the oversampling information at receiver. The performance of the proposed technique is evaluated for frequency selective channel. Results show that the proposed scheme can mitigate the clipping noise significantly for OFDM systems and in order to maintain the system's capacity, the clipping ratio should be larger than 2.5.

Applying Genetic Algorithms for Inventory Lot-Sizing Problem with Supplier Selection under Storage Space

The objective of this research is to calculate the optimal inventory lot-sizing for each supplier and minimize the total inventory cost which includes joint purchase cost of the products, transaction cost for the suppliers, and holding cost for remaining inventory. Genetic algorithms (GAs) are applied to the multi-product and multi-period inventory lot-sizing problems with supplier selection under storage space. Also a maximum storage space for the decision maker in each period is considered. The decision maker needs to determine what products to order in what quantities with which suppliers in which periods. It is assumed that demand of multiple products is known over a planning horizon. The problem is formulated as a mixed integer programming and is solved with the GAs. The detailed computation results are presented.

Deniable Authentication Protocol Resisting Man-in-the-Middle Attack

Deniable authentication is a new protocol which not only enables a receiver to identify the source of a received message but also prevents a third party from identifying the source of the message. The proposed protocol in this paper makes use of bilinear pairings over elliptic curves, as well as the Diffie-Hellman key exchange protocol. Besides the security properties shared with previous authentication protocols, the proposed protocol provides the same level of security with smaller public key sizes.

Entrepreneur Features as a Competence in the Design of the European Higher Education Area Degrees

This paper aims to explain the project carried out at the University of Cordoba, specifically at the High Polytechnic School in collaboration with two other organizations belonging to the Andalusian Ministry of Innovation, Science and Business: Andalusian Innovation and Development Agency (IDEA agency) [1] and the Territorial Net of Entrepreneurship Support (in Spanish Red Territorial de Apoyo al Emprendedor) [11]. The project is being developed in several stages of which only the first one has already been completed. However, several important preliminary results derive from it, based mainly in the description of the nature of entrepreneurship in the field of university education and its impact on student-s competency as recommended by the European Higher Education Area. Some problems holding back the correct future development will also be shown as derived from the specific context of application of the project.

Roundabout Optimal Entry and Circulating Flow Induced by Road Hump

Roundabout work on the principle of circulation and entry flows, where the maximum entry flow rates depend largely on circulating flow bearing in mind that entry flows must give away to circulating flows. Where an existing roundabout has a road hump installed at the entry arm, it can be hypothesized that the kinematics of vehicles may prevent the entry arm from achieving optimum performance. Road humps are traffic calming devices placed across road width solely as speed reduction mechanism. They are the preferred traffic calming option in Malaysia and often used on single and dual carriageway local routes. The speed limit on local routes is 30mph (50 km/hr). Road humps in their various forms achieved the biggest mean speed reduction (based on a mean speed before traffic calming of 30mph) of up to 10mph or 16 km/hr according to the UK Department of Transport. The underlying aim of reduced speed should be to achieve a 'safe' distribution of speeds which reflects the function of the road and the impacts on the local community. Constraining safe distribution of speeds may lead to poor drivers timing and delayed reflex reaction that can probably cause accident. Previous studies on road hump impact have focused mainly on speed reduction, traffic volume, noise and vibrations, discomfort and delay from the use of road humps. The paper is aimed at optimal entry and circulating flow induced by road humps. Results show that roundabout entry and circulating flow perform better in circumstances where there is no road hump at entrance.

Real-Time Hand Tracking and Gesture Recognition System Using Neural Networks

This paper introduces a hand gesture recognition system to recognize real time gesture in unstrained environments. Efforts should be made to adapt computers to our natural means of communication: Speech and body language. A simple and fast algorithm using orientation histograms will be developed. It will recognize a subset of MAL static hand gestures. A pattern recognition system will be using a transforrn that converts an image into a feature vector, which will be compared with the feature vectors of a training set of gestures. The final system will be Perceptron implementation in MATLAB. This paper includes experiments of 33 hand postures and discusses the results. Experiments shows that the system can achieve a 90% recognition average rate and is suitable for real time applications.

Evolution of Quality Function Deployment (QFD) via Fuzzy Concepts and Neural Networks

Quality Function Deployment (QFD) is an expounded, multi-step planning method for delivering commodity, services, and processes to customers, both external and internal to an organization. It is a way to convert between the diverse customer languages expressing demands (Voice of the Customer), and the organization-s languages expressing results that sate those demands. The policy is to establish one or more matrices that inter-relate producer and consumer reciprocal expectations. Due to its visual presence is called the “House of Quality" (HOQ). In this paper, we assumed HOQ in multi attribute decision making (MADM) pattern and through a proposed MADM method, rank technical specifications. Thereafter compute satisfaction degree of customer requirements and for it, we apply vagueness and uncertainty conditions in decision making by fuzzy set theory. This approach would propound supervised neural network (perceptron) for MADM problem solving.

A Study of Panel Logit Model and Adaptive Neuro-Fuzzy Inference System in the Prediction of Financial Distress Periods

The purpose of this paper is to present two different approaches of financial distress pre-warning models appropriate for risk supervisors, investors and policy makers. We examine a sample of the financial institutions and electronic companies of Taiwan Security Exchange (TSE) market from 2002 through 2008. We present a binary logistic regression with paned data analysis. With the pooled binary logistic regression we build a model including more variables in the regression than with random effects, while the in-sample and out-sample forecasting performance is higher in random effects estimation than in pooled regression. On the other hand we estimate an Adaptive Neuro-Fuzzy Inference System (ANFIS) with Gaussian and Generalized Bell (Gbell) functions and we find that ANFIS outperforms significant Logit regressions in both in-sample and out-of-sample periods, indicating that ANFIS is a more appropriate tool for financial risk managers and for the economic policy makers in central banks and national statistical services.

Production of Carbon Nanotubes by Iron Catalyst

Carbon nanotubes (CNTs) with their high mechanical, electrical, thermal and chemical properties are regarded as promising materials for many different potential applications. Having unique properties they can be used in a wide range of fields such as electronic devices, electrodes, drug delivery systems, hydrogen storage, textile etc. Catalytic chemical vapor deposition (CCVD) is a common method for CNT production especially for mass production. Catalysts impregnated on a suitable substrate are important for production with chemical vapor deposition (CVD) method. Iron catalyst and MgO substrate is one of most common catalyst-substrate combination used for CNT. In this study, CNTs were produced by CCVD of acetylene (C2H2) on magnesium oxide (MgO) powder substrate impregnated by iron nitrate (Fe(NO3)3•9H2O) solution. The CNT synthesis conditions were as follows: at synthesis temperatures of 500 and 800°C multiwall and single wall CNTs were produced respectively. Iron (Fe) catalysts were prepared by with Fe:MgO ratio of 1:100, 5:100 and 10:100. The duration of syntheses were 30 and 60 minutes for all temperatures and catalyst percentages. The synthesized materials were characterized by thermal gravimetric analysis (TGA), transmission electron microscopy (TEM) and Raman spectroscopy.

Enhanced Efficacy of Kinetic Power Transform for High-Speed Wind Field

The three-time-scale plant model of a wind power generator, including a wind turbine, a flexible vertical shaft, a Variable Inertia Flywheel (VIF) module, an Active Magnetic Bearing (AMB) unit and the applied wind sequence, is constructed. In order to make the wind power generator be still able to operate as the spindle speed exceeds its rated speed, the VIF is equipped so that the spindle speed can be appropriately slowed down once any stronger wind field is exerted. To prevent any potential damage due to collision by shaft against conventional bearings, the AMB unit is proposed to regulate the shaft position deviation. By singular perturbation order-reduction technique, a lower-order plant model can be established for the synthesis of feedback controller. Two major system parameter uncertainties, an additive uncertainty and a multiplicative uncertainty, are constituted by the wind turbine and the VIF respectively. Frequency Shaping Sliding Mode Control (FSSMC) loop is proposed to account for these uncertainties and suppress the unmodeled higher-order plant dynamics. At last, the efficacy of the FSSMC is verified by intensive computer and experimental simulations for regulation on position deviation of the shaft and counter-balance of unpredictable wind disturbance.

Structure of Linkages and Cam Gear for Integral Steering of Vehicles

This paper addresses issues of integral steering of vehicles with two steering axles, where the rear wheels are pivoted in the direction of the front wheels, but also in the opposite direction. The steering box of the rear axle is presented with simple linkages (single contour) that correlate the pivoting of the rear wheels according to the direction of the front wheels, respectively to the rotation angle of the steering wheel. The functionality of the system is analyzed – the extent to which the requirements of the integral steering are met by the considered/proposed mechanisms. The paper highlights the quality of the single contour linkages, with two driving elements for meeting these requirements, emphasizing diagrams of mechanisms with 2 driving elements. Cam variants are analyzed and proposed for the rear axle steering box. Cam profiles are determined by various factors.

An Analytical Electron Mobility Model based on Particle Swarm Computation for Siliconbased Devices

The study of the transport coefficients in electronic devices is currently carried out by analytical and empirical models. This study requires several simplifying assumptions, generally necessary to lead to analytical expressions in order to study the different characteristics of the electronic silicon-based devices. Further progress in the development, design and optimization of Silicon-based devices necessarily requires new theory and modeling tools. In our study, we use the PSO (Particle Swarm Optimization) technique as a computational tool to develop analytical approaches in order to study the transport phenomenon of the electron in crystalline silicon as function of temperature and doping concentration. Good agreement between our results and measured data has been found. The optimized analytical models can also be incorporated into the circuits simulators to study Si-based devices without impact on the computational time and data storage.