Robust Sensorless Speed Control of Induction Motor with DTFC and Fuzzy Speed Regulator

Recent developments in Soft computing techniques, power electronic switches and low-cost computational hardware have made it possible to design and implement sophisticated control strategies for sensorless speed control of AC motor drives. Such an attempt has been made in this work, for Sensorless Speed Control of Induction Motor (IM) by means of Direct Torque Fuzzy Control (DTFC), PI-type fuzzy speed regulator and MRAS speed estimator strategy, which is absolutely nonlinear in its nature. Direct torque control is known to produce quick and robust response in AC drive system. However, during steady state, torque, flux and current ripple occurs. So, the performance of conventional DTC with PI speed regulator can be improved by implementing fuzzy logic techniques. Certain important issues in design including the space vector modulated (SVM) 3-Ф voltage source inverter, DTFC design, generation of reference torque using PI-type fuzzy speed regulator and sensor less speed estimator have been resolved. The proposed scheme is validated through extensive numerical simulations on MATLAB. The simulated results indicate the sensor less speed control of IM with DTFC and PI-type fuzzy speed regulator provides satisfactory high dynamic and static performance compare to conventional DTC with PI speed regulator.

Robust Control Synthesis for an Unmanned Underwater Vehicle

The control design for unmanned underwater vehicles (UUVs) is challenging due to the uncertainties in the complex dynamic modeling of the vehicle as well as its unstructured operational environment. To cope with these difficulties, a practical robust control is therefore desirable. The paper deals with the application of coefficient diagram method (CDM) for a robust control design of an autonomous underwater vehicle. The CDM is an algebraic approach in which the characteristic polynomial and the controller are synthesized simultaneously. Particularly, a coefficient diagram (comparable to Bode diagram) is used effectively to convey pertinent design information and as a measure of trade-off between stability, response speed and robustness. In the polynomial ring, Kharitonov polynomials are employed to analyze the robustness of the controller due to parametric uncertainties.

Three Dimensional Analysis of Pollution Dispersion in Street Canyon

Three dimensional simulations are carried out to estimate the effect of wind direction, wind speed and geometry on the flow and dispersion of vehicular pollutant in a street canyon. The pollutant sources are motor vehicles passing between the two buildings. Suitable emission factors for petrol and diesel vehicles at varying vehicle speed are used for the estimation of the rate of emission from the streets. The dispersion of automobile pollutant released from the street is simulated by introducing vehicular emission source term as a fixed-flux boundary condition at the ground level over the road. The emission source term is suitably calculated by adopting emission factors from literature for varying conditions of street traffic. It is observed that increase in wind angle disturbs the symmetric pattern of pollution distribution along the street length. The concentration increases in the far end of the street as compared to the near end.

CFD Analysis on Aerodynamic Design Optimization of Wind Turbine Rotor Blades

Wind energy has been shown to be one of the most viable sources of renewable energy. With current technology, the low cost of wind energy is competitive with more conventional sources of energy such as coal. Most blades available for commercial grade wind turbines incorporate a straight span-wise profile and airfoil shaped cross sections. These blades are found to be very efficient at lower wind speeds in comparison to the potential energy that can be extracted. However as the oncoming wind speed increases the efficiency of the blades decreases as they approach a stall point. This paper explores the possibility of increasing the efficiency of the blades at higher wind speeds while maintaining efficiency at the lower wind speeds. The design intends to maintain efficiency at lower wind speeds by selecting the appropriate orientation and size of the airfoil cross sections based on a low oncoming wind speed and given constant rotation rate. The blades will be made more efficient at higher wind speeds by implementing a swept blade profile. Performance was investigated using the computational fluid dynamics (CFD).

Analyzing and Formulation of Product Lead Time

Product Lead Time (PLT) is the period of time from receiving a customer's order to delivering the final product. PLT is an indicator of the manufacturing controllability, efficiency and performance. Due to the explosion in the rate of technological innovations and the rapid changes in the nature of manufacturing processes, manufacturing firms can bring the new products to market quicker only if they can reduce their PLT and speed up the rate at which they can design, plan, control, and manufacture. Although there is a substantial body of research on manufacturing relating to cost and quality issues, there is no much specific research conducted in relation to the formulation of PLT, despite its significance and importance. This paper analyzes and formulates PLT which can be used as a guideline for achieving the shorter PLT. Further more this paper identifies the causes of delay and factors that contributes to the increased product lead-time.

Acoustic Analysis with Consideration of Damping Effects of Air Viscosity in Sound Pathway

Sound pathways in the enclosures of small earphones are very narrow. In such narrow pathways, the speed of sound propagation and the phase of sound waves change because of the air viscosity. We have developed a new finite element method that includes the effects of damping due to air viscosity for modeling the sound pathway. This method is developed as an extension of the existing finite element method for porous sound-absorbing materials. The numerical calculation results using the proposed finite element method are validated against the existing calculation methods.

Numerical Analysis of Wind Loads on a Hemicylindrical Roof Building

The flow field over a three dimensional pole barn characterized by a cylindrical roof has been numerically investigated. Wind pressure and viscous loads acting on the agricultural building have been analyzed for several incoming wind directions, so as to evaluate the most critical load condition on the structure. A constant wind velocity profile, based on the maximum reference wind speed in the building site (peak gust speed worked out for 50 years return period) and on the local roughness coefficient, has been simulated. In order to contemplate also the hazard due to potential air wedging between the stored hay and the lower part of the ceiling, the effect of a partial filling of the barn has been investigated. The distribution of wind-induced loads on the structure have been determined, allowing a numerical quantification of the effect of wind direction on the induced stresses acting on a hemicylindrical roof.

Evaluation of Aerodynamic Noise Generation by a Generic Side Mirror

The aerodynamic noise radiation from a side view mirror (SVM) in the high-speed airflow is calculated by the combination of unsteady incompressible fluid flow analysis and acoustic analysis. The transient flow past the generic SVM is simulated with variable turbulence model, namely DES Detached Eddy Simulation and LES (Large Eddy Simulation). Detailed velocity vectors and contour plots of the time-varying velocity and pressure fields are presented along cut planes in the flow-field. Mean and transient pressure are also monitored at several points in the flow field and compared to corresponding experimentally data published in literature. The acoustic predictions made using the Ffowcs-Williams-Hawkins acoustic analogy (FW-H) and the boundary element (BEM).

A Novel Multiple Valued Logic OHRNS Modulo rn Adder Circuit

Residue Number System (RNS) is a modular representation and is proved to be an instrumental tool in many digital signal processing (DSP) applications which require high-speed computations. RNS is an integer and non weighted number system; it can support parallel, carry-free, high-speed and low power arithmetic. A very interesting correspondence exists between the concepts of Multiple Valued Logic (MVL) and Residue Number Arithmetic. If the number of levels used to represent MVL signals is chosen to be consistent with the moduli which create the finite rings in the RNS, MVL becomes a very natural representation for the RNS. There are two concerns related to the application of this Number System: reaching the most possible speed and the largest dynamic range. There is a conflict when one wants to resolve both these problem. That is augmenting the dynamic range results in reducing the speed in the same time. For achieving the most performance a method is considere named “One-Hot Residue Number System" in this implementation the propagation is only equal to one transistor delay. The problem with this method is the huge increase in the number of transistors they are increased in order m2 . In real application this is practically impossible. In this paper combining the Multiple Valued Logic and One-Hot Residue Number System we represent a new method to resolve both of these two problems. In this paper we represent a novel design of an OHRNS-based adder circuit. This circuit is useable for Multiple Valued Logic moduli, in comparison to other RNS design; this circuit has considerably improved the number of transistors and power consumption.

Kinetics Studies on Biological Treatment of Tannery Wastewater Using Mixed Culture

In this study, aerobic digestion of tannery industry wastewater was carried out using mixed culture obtained from common effluent treatment plant treating tannery wastewater. The effect of pH, temperature, inoculum concentration, agitation speed and initial substrate concentration on the reduction of organic matters were found. The optimum conditions for COD reduction was found to be pH - 7 (60%), temperature - 30ÔùªC (61%), inoculum concentration - 2% (61%), agitation speed - 150rpm (65%) and initial substrate concentration - 1560 mg COD/L (74%). Kinetics studies were carried by using Monod model, First order, Diffusional model and Singh model. From the results it was found that the Monod model suits well for the degradation of tannery wastewater using mixed microbial consortium.

Traffic Signs

Road signs are the elements of roads with a lot of influence in driver-s behavior. So that signals can fulfill its function, they must overcome visibility and durability requirements, particularly needed at night, when the coefficient of retroreflection becomes a decisive factor in ensuring road safety. Accepting that the visibility of the signage has implications for people-s safety, we understand the importance to fulfill its function: to foster the highest standards of service and safety in drivers. The usual conditions of perception of any sign are determined by: age of the driver, reflective material, luminosity, vehicle speed and emplacement. In this way, this paper evaluates the different signals to increase the safety road.

Measuring Heterogeneous Traffic Density

Traffic Density provides an indication of the level of service being provided to the road users. Hence, there is a need to study the traffic flow characteristics with specific reference to density in detail. When the length and speed of the vehicles in a traffic stream vary significantly, the concept of occupancy, rather than density, is more appropriate to describe traffic concentration. When the concept of occupancy is applied to heterogeneous traffic condition, it is necessary to consider the area of the road space and the area of the vehicles as the bases. Hence, a new concept named, 'area-occupancy' is proposed here. It has been found that the estimated area-occupancy gives consistent values irrespective of change in traffic composition.

Position Based Routing Protocol with More Reliability in Mobile Ad Hoc Network

Position based routing protocols are the kinds of routing protocols, which they use of nodes location information, instead of links information to routing. In position based routing protocols, it supposed that the packet source node has position information of itself and it's neighbors and packet destination node. Greedy is a very important position based routing protocol. In one of it's kinds, named MFR (Most Forward Within Radius), source node or packet forwarder node, sends packet to one of it's neighbors with most forward progress towards destination node (closest neighbor to destination). Using distance deciding metric in Greedy to forward packet to a neighbor node, is not suitable for all conditions. If closest neighbor to destination node, has high speed, in comparison with source node or intermediate packet forwarder node speed or has very low remained battery power, then packet loss probability is increased. Proposed strategy uses combination of metrics distancevelocity similarity-power, to deciding about giving the packet to which neighbor. Simulation results show that the proposed strategy has lower lost packets average than Greedy, so it has more reliability.

Delay and Energy Consumption Analysis of Conventional SRAM

The energy consumption and delay in read/write operation of conventional SRAM is investigated analytically as well as by simulation. Explicit analytical expressions for the energy consumption and delay in read and write operation as a function of device parameters and supply voltage are derived. The expressions are useful in predicting the effect of parameter changes on the energy consumption and speed as well as in optimizing the design of conventional SRAM. HSPICE simulation in standard 0.25μm CMOS technology confirms precision of analytical expressions derived from this paper.

An Improvement of PDLZW implementation with a Modified WSC Updating Technique on FPGA

In this paper, an improvement of PDLZW implementation with a new dictionary updating technique is proposed. A unique dictionary is partitioned into hierarchical variable word-width dictionaries. This allows us to search through dictionaries in parallel. Moreover, the barrel shifter is adopted for loading a new input string into the shift register in order to achieve a faster speed. However, the original PDLZW uses a simple FIFO update strategy, which is not efficient. Therefore, a new window based updating technique is implemented to better classify the difference in how often each particular address in the window is referred. The freezing policy is applied to the address most often referred, which would not be updated until all the other addresses in the window have the same priority. This guarantees that the more often referred addresses would not be updated until their time comes. This updating policy leads to an improvement on the compression efficiency of the proposed algorithm while still keep the architecture low complexity and easy to implement.

Numerical Analysis of the Performance of the DU91-W2-250 Airfoil for Straight-Bladed Vertical-Axis Wind Turbine Application

This paper presents a numerical analysis of the performance of a three-bladed Darrieus vertical-axis wind turbine based on the DU91-W2-250 airfoil. A complete campaign of 2-D simulations, performed for several values of tip speed ratio and based on RANS unsteady calculations, has been performed to obtain the rotor torque and power curves. Rotor performances have been compared with the results of a previous work based on the use of the NACA 0021 airfoil. Both the power coefficient and the torque coefficient have been determined as a function of the tip speed ratio. The flow field around rotor blades has also been analyzed. As a final result, the performance of the DU airfoil based rotor appears to be lower than the one based on the NACA 0021 blade section. This behavior could be due to the higher stall characteristics of the NACA profile, being the separation zone at the trailing edge more extended for the DU airfoil.

A Parallel Algorithm for 2-D Cylindrical Geometry Transport Equation with Interface Corrections

In order to make conventional implicit algorithm to be applicable in large scale parallel computers , an interface prediction and correction of discontinuous finite element method is presented to solve time-dependent neutron transport equations under 2-D cylindrical geometry. Domain decomposition is adopted in the computational domain.The numerical experiments show that our parallel algorithm with explicit prediction and implicit correction has good precision, parallelism and simplicity. Especially, it can reach perfect speedup even on hundreds of processors for large-scale problems.

Software Reengineering Tool for Traffic Accident Data

In today-s hip hop world where everyone is running short of time and works hap hazardly,the similar scene is common on the roads while in traffic.To do away with the fatal consequences of such speedy traffics on rushy lanes, a software to analyse and keep account of the traffic and subsequent conjestion is being used in the developed countries. This software has being implemented and used with the help of a suppprt tool called Critical Analysis Reporting Environment.There has been two existing versions of this tool.The current research paper involves examining the issues and probles while using these two practically. Further a hybrid architecture is proposed for the same that retains the quality and performance of both and is better in terms of coupling of components , maintainence and many other features.

Real-Time Implementation of STANAG 4539 High-Speed HF Modem

High-frequency (HF) communications have been used by military organizations for more than 90 years. The opportunity of very long range communications without the need for advanced equipment makes HF a convenient and inexpensive alternative of satellite communications. Besides the advantages, voice and data transmission over HF is a challenging task, because the HF channel generally suffers from Doppler shift and spread, multi-path, cochannel interference, and many other sources of noise. In constructing an HF data modem, all these effects must be taken into account. STANAG 4539 is a NATO standard for high-speed data transmission over HF. It allows data rates up to 12800 bps over an HF channel of 3 kHz. In this work, an efficient implementation of STANAG 4539 on a single Texas Instruments- TMS320C6747 DSP chip is described. The state-of-the-art algorithms used in the receiver and the efficiency of the implementation enables real-time high-speed data / digitized voice transmission over poor HF channels.

Some Design Issues in Designing of 50KW 50Krpm Permanent Magnet Synchronous Machine

A numbers of important developments have led to an increasing attractiveness for very high speed electrical machines (either motor or generator). Specifically the increasing switching speed of power electronics, high energy magnets, high strength retaining materials, better high speed bearings and improvements in design analysis are the primary drivers in a move to higher speed. The design challenges come in the mechanical design both in terms of strength and resonant modes and in the electromagnetic design particularly in respect of iron losses and ac losses in the various conducting parts including the rotor. This paper describes detailed design work which has been done on a 50,000 rpm, 50kW permanent magnet( PM) synchronous machine. It describes work on electromagnetic and rotor eddy current losses using a variety of methods including both 2D finite element analysis