Influence of Static Pressure on Viability of Entomopathogenic Nematodes – Steinernema feltiae

The entomopathogenic nematodes Steinernema feltiaeare are components of many biological pesticides. The biological pesticides are applicated by means a spraying machines. The influence of high pressure operating time on viability of nematodes has been experimentally investigated in order to explain if static pressure inside of the sprayers installation was able to destroy nematodes. The value of pressure was 55 MPa and its maximum operating time was 3 hours. Changes were found in viability of pressurized samples of nematodes, mixed with water.

Prognostic and Diagnostic Modes of Mathematical Model for the Pre-operation of Suspended Sediment Transport model in Estuaries and Coastal areas

Both prognostic and diagnostic modes of a 3D baroclinic model in hydrodynamic and sediment transport models of the Princeton Ocean Model (POM) were conducted to separate prognose and diagnose effects of different hydrodynamic factors on transport of suspended sediment discharged from the rivers to the Gulf of Thailand (GoT). Both transport modes of suspended sediment distribution in the GoT were numerically simulated. It could be concluded that the suspended sediment discharged from the rivers around the GoT. Most of sediments in estuaries and coastal areas are deposited outside the GoT under the condition of wind-driven current, and very small amount of the sediments of them are transported faraway. On the basis of wind forcing, sediments from the lower GoT to the upper GoT are mainly transported south-northwestward and also continuously moved north-southwestward. An obvious 3D characteristic of suspended sediment transport is produced in the wind-driven current residual circulation condition. In this study, the transport patterns at the third layer are generally consistent with the typhoon-induced strong currents in two case studies of Typhoon Linda 1997. The case studies presented the prognostic and diagnostic modes during 00UTC28OCT1997 to 12UTC06NOV1997 in a short period with the current condition for pre-operation of the suspended sediment transport model in estuaries and coastal areas.

Optimization of SAD Algorithm on VLIW DSP

SAD (Sum of Absolute Difference) algorithm is heavily used in motion estimation which is computationally highly demanding process in motion picture encoding. To enhance the performance of motion picture encoding on a VLIW processor, an efficient implementation of SAD algorithm on the VLIW processor is essential. SAD algorithm is programmed as a nested loop with a conditional branch. In VLIW processors, loop is usually optimized by software pipelining, but researches on optimal scheduling of software pipelining for nested loops, especially nested loops with conditional branches are rare. In this paper, we propose an optimal scheduling and implementation of SAD algorithm with conditional branch on a VLIW DSP processor. The proposed optimal scheduling first transforms the nested loop with conditional branch into a single loop with conditional branch with consideration of full utilization of ILP capability of the VLIW processor and realization of earlier escape from the loop. Next, the proposed optimal scheduling applies a modulo scheduling technique developed for single loop. Based on this optimal scheduling strategy, optimal implementation of SAD algorithm on TMS320C67x, a VLIW DSP is presented. Through experiments on TMS320C6713 DSK, it is shown that H.263 encoder with the proposed SAD implementation performs better than other H.263 encoder with other SAD implementations, and that the code size of the optimal SAD implementation is small enough to be appropriate for embedded environments.

Web Service Architecture for Computer-Adaptive Testing on e-Learning

This paper proposes a Web service and serviceoriented architecture (SOA) for a computer-adaptive testing (CAT) process on e-learning systems. The proposed architecture is developed to solve an interoperability problem of the CAT process by using Web service. The proposed SOA and Web service define all services needed for the interactions between systems in order to deliver items and essential data from Web service to the CAT Webbased application. These services are implemented in a XML-based architecture, platform independence and interoperability between the Web service and CAT Web-based applications.

E-Learning Experiences of Hong Kong Students

The adoption of e-learning in Hong Kong has been increasing rapidly in the past decade. To understand the e-learning experiences of the students, the School of Professional and Continuing Education of The University of Hong Kong conducted a survey. The survey aimed to collect students- experiences in using learning management system, their perceived e-learning advantages, barriers in e-learning and preferences in new e-learning development. A questionnaire with 84 questions was distributed in mid 2012 and 608 valid responds were received. The analysis results showed that the students found e-learning helpful to their study. They preferred interactive functions and mobile features. Blended learning mode, both face-to-face learning mode integrated with online learning and face-to-face learning mode supplemented with online resources, were preferred by the students. The results of experiences of Hong Kong students in e-learning provided a contemporary reference to the e-learning practitioners to understand the e-learning situation in Asia.

Numerical Study of Natural Convection Effects in Latent Heat Storage using Aluminum Fins and Spiral Fillers

A numerical investigation has carried out to understand the melting characteristics of phase change material (PCM) in a fin type latent heat storage with the addition of embedded aluminum spiral fillers. It is known that melting performance of PCM can be significantly improved by increasing the number of embedded metallic fins in the latent heat storage system but to certain values where only lead to small improvement in heat transfer rate. Hence, adding aluminum spiral fillers within the fin gap can be an option to improve heat transfer internally. This paper presents extensive computational visualizations on the PCM melting patterns of the proposed fin-spiral fillers configuration. The aim of this investigation is to understand the PCM-s melting behaviors by observing the natural convection currents movement and melting fronts formation. Fluent 6.3 simulation software was utilized in producing twodimensional visualizations of melting fractions, temperature distributions and flow fields to illustrate the melting process internally. The results show that adding aluminum spiral fillers in Fin type latent heat storage can promoted small but more active natural convection currents and improve melting of PCM.

Smart Surveillance using PDA

The aim of this research is to develop a fast and reliable surveillance system based on a personal digital assistant (PDA) device. This is to extend the capability of the device to detect moving objects which is already available in personal computers. Secondly, to compare the performance between Background subtraction (BS) and Temporal Frame Differencing (TFD) techniques for PDA platform as to which is more suitable. In order to reduce noise and to prepare frames for the moving object detection part, each frame is first converted to a gray-scale representation and then smoothed using a Gaussian low pass filter. Two moving object detection schemes i.e., BS and TFD have been analyzed. The background frame is updated by using Infinite Impulse Response (IIR) filter so that the background frame is adapted to the varying illuminate conditions and geometry settings. In order to reduce the effect of noise pixels resulting from frame differencing morphological filters erosion and dilation are applied. In this research, it has been found that TFD technique is more suitable for motion detection purpose than the BS in term of speed. On average TFD is approximately 170 ms faster than the BS technique

Bio-Inspired Generalized Global Shape Approach for Writer Identification

Writer identification is one of the areas in pattern recognition that attract many researchers to work in, particularly in forensic and biometric application, where the writing style can be used as biometric features for authenticating an identity. The challenging task in writer identification is the extraction of unique features, in which the individualistic of such handwriting styles can be adopted into bio-inspired generalized global shape for writer identification. In this paper, the feasibility of generalized global shape concept of complimentary binding in Artificial Immune System (AIS) for writer identification is explored. An experiment based on the proposed framework has been conducted to proof the validity and feasibility of the proposed approach for off-line writer identification.

Two Undetectable On-line Dictionary Attacks on Debiao et al.’s S-3PAKE Protocol

In 2011, Debiao et al. pointed out that S-3PAKE protocol proposed by Lu and Cao for password-authenticated key exchange in the three-party setting is vulnerable to an off-line dictionary attack. Then, they proposed some countermeasures to eliminate the security vulnerability of the S-3PAKE. Nevertheless, this paper points out their enhanced S-3PAKE protocol is still vulnerable to undetectable on-line dictionary attacks unlike their claim.

Automatic Camera Calibration for Images of Soccer Match

Camera calibration plays an important role in the domain of the analysis of sports video. Considering soccer video, in most cases, the cross-points can be used for calibration at the center of the soccer field are not sufficient, so this paper introduces a new automatic camera calibration algorithm focus on solving this problem by using the properties of images of the center circle, halfway line and a touch line. After the theoretical analysis, a practicable automatic algorithm is proposed. Very little information used though, results of experiments with both synthetic data and real data show that the algorithm is applicable.

Effects of Dry Period Length on, Milk Production and Composition, Blood Metabolites and Complete Blood Count in Subsequent Lactation of Holstein Dairy Cows

Twenty - nine Holstein cows were used to evaluate the effects of different dry period (DP) lengths on milk yield and composition, some blood metabolites, and complete blood count (CBC). Cows were assigned to one of 2 treatments: 1) 60-d dry period, 2) 35-d DP. Milk yield, from calving to 60 days, was not different for cows on the treatments (p =0.130). Cows in the 35-d DP produced more milk protein and SNF compare with cows in treatment 1 (p ≤ 0.05). Serum glucose, non-esterified fatty acids (NEFA), beta hydroxyl butyrate acid (BHBA), blood urea nitrogen (BUN), urea, and glutamic oxaloacetic transaminase (GOT) were all similar among the treatments. Body condition score (BCS), body weight (BW), complete blood count (CBC) and health problems were similar between the treatments. The results of this study demonstrated we can reduce the dry period length to 35 days with no problems.

Functional Near Infrared Spectroscope for Cognition Brain Tasks by Wavelets Analysis and Neural Networks

Brain Computer Interface (BCI) has been recently increased in research. Functional Near Infrared Spectroscope (fNIRs) is one the latest technologies which utilize light in the near-infrared range to determine brain activities. Because near infrared technology allows design of safe, portable, wearable, non-invasive and wireless qualities monitoring systems, fNIRs monitoring of brain hemodynamics can be value in helping to understand brain tasks. In this paper, we present results of fNIRs signal analysis indicating that there exist distinct patterns of hemodynamic responses which recognize brain tasks toward developing a BCI. We applied two different mathematics tools separately, Wavelets analysis for preprocessing as signal filters and feature extractions and Neural networks for cognition brain tasks as a classification module. We also discuss and compare with other methods while our proposals perform better with an average accuracy of 99.9% for classification.

Extremal Properties of Generalized Class of Close-to-convex Functions

Let Gα ,β (γ ,δ ) denote the class of function f (z), f (0) = f ′(0)−1= 0 which satisfied e δ {αf ′(z)+ βzf ′′(z)}> γ i Re in the open unit disk D = {z ∈ı : z < 1} for some α ∈ı (α ≠ 0) , β ∈ı and γ ∈ı (0 ≤γ 0 . In this paper, we determine some extremal properties including distortion theorem and argument of f ′( z ) .

Performance Enhancement of Cellular OFDM Based Wireless LANs by Exploiting Spatial Diversity Techniques

This paper represents an investigation on how exploiting multiple transmit antennas by OFDM based wireless LAN subscribers can mitigate physical layer error rate. Then by comparing the Wireless LANs that utilize spatial diversity techniques with the conventional ones it will reveal how PHY and TCP throughputs behaviors are ameliorated. In the next step it will assess the same issues based on a cellular context operation which is mainly introduced as an innovated solution that beside a multi cell operation scenario benefits spatio-temporal signaling schemes as well. Presented simulations will shed light on the improved performance of the wide range and high quality wireless LAN services provided by the proposed approach.

A Fully Implicit Finite-Difference Solution to One Dimensional Coupled Nonlinear Burgers’ Equations

A fully implicit finite-difference method has been proposed for the numerical solutions of one dimensional coupled nonlinear Burgers’ equations on the uniform mesh points. The method forms a system of nonlinear difference equations which is to be solved at each iteration. Newton’s iterative method has been implemented to solve this nonlinear assembled system of equations. The linear system has been solved by Gauss elimination method with partial pivoting algorithm at each iteration of Newton’s method. Three test examples have been carried out to illustrate the accuracy of the method. Computed solutions obtained by proposed scheme have been compared with analytical solutions and those already available in the literature by finding L2 and L∞ errors.

Effect of Different Configurations of Mechanical Aerators on Oxygen Transfer and Aeration Efficiency with respect to Power Consumption

This paper examines the use of mechanical aerator for oxidation-ditch process. The rotor, which controls the aeration, is the main component of the aeration process. Therefore, the objective of this study is to find out the variations in overall oxygen transfer coefficient (KLa) and aeration efficiency (AE) for different configurations of aerator by varying the parameters viz. speed of aerator, depth of immersion, blade tip angles so as to yield higher values of KLa and AE. Six different configurations of aerator were developed and fabricated in the laboratory and were tested for abovementioned parameters. The curved blade rotor (CBR) emerged as a potential aerator with blade tip angle of 47°. The mathematical models are developed for predicting the behaviour of CBR w.r.t kLa and power. In laboratory studies, the optimum value of KLa and AE were observed to be 10.33 h-1 and 2.269 kg O2/ kWh.

Conservation and Repair Works for Traditional Timber Mosque in Malaysia: A Review on Techniques

Building life cycle will never be excused from the existence of defects and deterioration. They are common problems in building, existed in newly build or in aged building. Buildings constructed from wood are indeed affected by its agent and serious defects and damages can reduce values to a building. In repair works, it is important to identify the causes and repair techniques that best suites with the condition. This paper reviews the conservation of traditional timber mosque in Malaysia comprises the concept, principles and approaches of mosque conservation in general. As in conservation practice, wood in historic building can be conserved by using various restoration and conservation techniques which this can be grouped as Fully and Partial Replacement, Mechanical Reinforcement, Consolidation by Impregnation and Reinforcement, Removing Paint and also Preservation of Wood and Control Insect Invasion, as to prolong and extended the function of a timber in a building. It resulted that the common techniques adopted in timber mosque conservation are from the conventional ways and the understanding of the repair technique requires the use of only preserve wood to prevent the future immature defects.

A Review of Critical Success Factor in Building Maintenance Management Practice for University Sector

Building maintenance plays an important role among other activities in building operation. Building defect and damages are part of the building maintenance 'bread and butter' as their input indicated in the building inspection is very much justified, particularly as to determine the building performance. There will be no escape route or short cut from building maintenance work. This study attempts to identify a competitive performance that translates the Critical Success Factor achievements and satisfactorily meet the university-s expectation. The quality and efficiency of maintenance management operation of building depends, to some extent, on the building condition information, the expectation from the university sector and the works carried out for each maintenance activity. This paper reviews the critical success factor in building maintenance management practice for university sectors from four (4) perspectives which include (1) customer (2) internal processes (3) financial and (4) learning and growth perspective. The enhancement of these perspectives is capable to reach the maintenance management goal for a better living environment in university campus.

Investigation of Layer Thickness and Surface Roughness on Aerodynamic Coefficients of Wind Tunnel RP Models

Traditional wind tunnel models are meticulously machined from metal in a process that can take several months. While very precise, the manufacturing process is too slow to assess a new design's feasibility quickly. Rapid prototyping technology makes this concurrent study of air vehicle concepts via computer simulation and in the wind tunnel possible. This paper described the Affects layer thickness models product with rapid prototyping on Aerodynamic Coefficients for Constructed wind tunnel testing models. Three models were evaluated. The first model was a 0.05mm layer thickness and Horizontal plane 0.1μm (Ra) second model was a 0.125mm layer thickness and Horizontal plane 0.22μm (Ra) third model was a 0.15mm layer thickness and Horizontal plane 4.6μm (Ra). These models were fabricated from somos 18420 by a stereolithography (SLA). A wing-body-tail configuration was chosen for the actual study. Testing covered the Mach range of Mach 0.3 to Mach 0.9 at an angle-of-attack range of -2° to +12° at zero sideslip. Coefficients of normal force, axial force, pitching moment, and lift over drag are shown at each of these Mach numbers. Results from this study show that layer thickness does have an effect on the aerodynamic characteristics in general; the data differ between the three models by fewer than 5%. The layer thickness does have more effect on the aerodynamic characteristics when Mach number is decreased and had most effect on the aerodynamic characteristics of axial force and its derivative coefficients.

Gluten-Free Cookies Enriched with Blueberry Pomace: Optimization of Baking Process

With the aim of improving nutritional profile and antioxidant capacity of gluten-free cookies, blueberry pomace, by-product of juice production, was processed into a new food ingredient by drying and grinding and used for a gluten-free cookie formulation. Since the quality of a baked product is highly influenced by the baking conditions, the objective of this work was to optimize the baking time and thickness of dough pieces, by applying Response Surface Methodology (RSM) in order to obtain the best technological quality of the cookies. The experiments were carried out according to a Central Composite Design (CCD) by selecting the dough thickness and baking time as independent variables, while hardness, color parameters (L*, a* and b* values), water activity, diameter and short/long ratio were response variables. According to the results of RSM analysis, the baking time of 13.74min and dough thickness of 4.08mm was found to be the optimal for the baking temperature of 170°C. As similar optimal parameters were obtained by previously conducted experiment based on sensory analysis, response surface methodology (RSM) can be considered as a suitable approach to optimize the baking process.