Conceptual Multidimensional Model

The data is available in abundance in any business organization. It includes the records for finance, maintenance, inventory, progress reports etc. As the time progresses, the data keep on accumulating and the challenge is to extract the information from this data bank. Knowledge discovery from these large and complex databases is the key problem of this era. Data mining and machine learning techniques are needed which can scale to the size of the problems and can be customized to the application of business. For the development of accurate and required information for particular problem, business analyst needs to develop multidimensional models which give the reliable information so that they can take right decision for particular problem. If the multidimensional model does not possess the advance features, the accuracy cannot be expected. The present work involves the development of a Multidimensional data model incorporating advance features. The criterion of computation is based on the data precision and to include slowly change time dimension. The final results are displayed in graphical form.

3D Digitalization of the Human Body for Use in Orthotics and Prosthetics

The motivation of this work was to find a suitable 3D scanner for human body parts digitalization in the field of prosthetics and orthotics. The main project objective is to compare the three hand-held portable scanners (two optical and one laser) and two optical tripod scanners. The comparison was made with respect of scanning detail, simplicity of operation and ability to scan directly on the human body. Testing was carried out on a plaster cast of the upper limb and directly on a few volunteers. The objective monitored parameters were time of digitizing and post-processing of 3D data and resulting visual data quality. Subjectively, it was considered level of usage and handling of the scanner. The new tripod was developed to improve the face scanning conditions. The results provide an overview of the suitability of different types of scanners.

Power Saving System in Green Data Center

Power consumption is rapidly increased in data centers because the number of data center is increased and more the scale of data center become larger. Therefore, it is one of key research items to reduce power consumption in data center. The peak power of a typical server is around 250 watts. When a server is idle, it continues to use around 60% of the power consumed when in use, though vendors are putting effort into reducing this “idle" power load. Servers tend to work at only around a 5% to 20% utilization rate, partly because of response time concerns. An average of 10% of servers in their data centers was unused. In those reason, we propose dynamic power management system to reduce power consumption in green data center. Experiment result shows that about 55% power consumption is reduced at idle time.

Event Information Extraction System (EIEE): FSM vs HMM

Automatic Extraction of Event information from social text stream (emails, social network sites, blogs etc) is a vital requirement for many applications like Event Planning and Management systems and security applications. The key information components needed from Event related text are Event title, location, participants, date and time. Emails have very unique distinctions over other social text streams from the perspective of layout and format and conversation style and are the most commonly used communication channel for broadcasting and planning events. Therefore we have chosen emails as our dataset. In our work, we have employed two statistical NLP methods, named as Finite State Machines (FSM) and Hidden Markov Model (HMM) for the extraction of event related contextual information. An application has been developed providing a comparison among the two methods over the event extraction task. It comprises of two modules, one for each method, and works for both bulk as well as direct user input. The results are evaluated using Precision, Recall and F-Score. Experiments show that both methods produce high performance and accuracy, however HMM was good enough over Title extraction and FSM proved to be better for Venue, Date, and time.

From Micro to Nanosystems: An Exploratory Study of Influences on Innovation Teams

What influences microsystems (MEMS) and nanosystems (NEMS) innovation teams apart from technology complexity? Based on in-depth interviews with innovators, this research explores the key influences on innovation teams in the early phases of MEMS/NEMS. Projects are rare and may last from 5 to 10 years or more from idea to concept. As fundamental technology development in MEMS/NEMS is highly complex and interdisciplinary by involving expertise from different basic and engineering disciplines, R&D is rather a 'testing of ideas' with many uncertainties than a clearly structured process. The purpose of this study is to explore the innovation teams- environment and give specific insights for future management practices. The findings are grouped into three major areas: people, know-how and experience, and market. The results highlight the importance and differences of innovation teams- composition, transdisciplinary knowledge, project evaluation and management compared to the counterparts from new product development teams.

On-line Identification of Continuous-time Hammerstein Systems via RBF Networks and Immune Algorithm

This paper deals with an on-line identification method of continuous-time Hammerstein systems by using the radial basis function (RBF) networks and immune algorithm (IA). An unknown nonlinear static part to be estimated is approximately represented by the RBF network. The IA is efficiently combined with the recursive least-squares (RLS) method. The objective function for the identification is regarded as the antigen. The candidates of the RBF parameters such as the centers and widths are coded into binary bit strings as the antibodies and searched by the IA. On the other hand, the candidates of both the weighting parameters of the RBF network and the system parameters of the linear dynamic part are updated by the RLS method. Simulation results are shown to illustrate the proposed method.

Flow Acoustics in Solid-Fluid Structures

The governing two-dimensional equations of a heterogeneous material composed of a fluid (allowed to flow in the absence of acoustic excitations) and a crystalline piezoelectric cubic solid stacked one-dimensionally (along the z direction) are derived and special emphasis is given to the discussion of acoustic group velocity for the structure as a function of the wavenumber component perpendicular to the stacking direction (being the x axis). Variations in physical parameters with y are neglected assuming infinite material homogeneity along the y direction and the flow velocity is assumed to be directed along the x direction. In the first part of the paper, the governing set of differential equations are derived as well as the imposed boundary conditions. Solutions are provided using Hamilton-s equations for the wavenumber vs. frequency as a function of the number and thickness of solid layers and fluid layers in cases with and without flow (also the case of a position-dependent flow in the fluid layer is considered). In the first part of the paper, emphasis is given to the small-frequency case. Boundary conditions at the bottom and top parts of the full structure are left unspecified in the general solution but examples are provided for the case where these are subject to rigid-wall conditions (Neumann boundary conditions in the acoustic pressure). In the second part of the paper, emphasis is given to the general case of larger frequencies and wavenumber-frequency bandstructure formation. A wavenumber condition for an arbitrary set of consecutive solid and fluid layers, involving four propagating waves in each solid region, is obtained again using the monodromy matrix method. Case examples are finally discussed.

A Model Driven Based Method for Scheduling Analysis and HW/SW Partitioning

Unified Modeling Language (UML) extensions for real time embedded systems (RTES) co-design, are taking a growing interest by a great number of industrial and research communities. The extension mechanism is provided by UML profiles for RTES. It aims at improving an easily-understood method of system design for non-experts. On the other hand, one of the key items of the co- design methods is the Hardware/Software partitioning and scheduling tasks. Indeed, it is mandatory to define where and when tasks are implemented and run. Unfortunately the main goals of co-design are not included in the usual practice of UML profiles. So, there exists a need for mapping used models to an execution platform for both schedulability test and HW/SW partitioning. In the present work, test schedulability and design space exploration are performed at an early stage. The proposed approach adopts Model Driven Engineering MDE. It starts from UML specification annotated with the recent profile for the Modeling and Analysis of Real Time Embedded systems MARTE. Following refinement strategy, transformation rules allow to find a feasible schedule that satisfies timing constraints and to define where tasks will be implemented. The overall approach is experimented for the design of a football player robot application.

Time and Frequency Domain Analysis of Heart Rate Variability and their Correlations in Diabetes Mellitus

Diabetes mellitus (DM) is frequently characterized by autonomic nervous dysfunction. Analysis of heart rate variability (HRV) has become a popular noninvasive tool for assessing the activities of autonomic nervous system (ANS). In this paper, changes in ANS activity are quantified by means of frequency and time domain analysis of R-R interval variability. Electrocardiograms (ECG) of 16 patients suffering from DM and of 16 healthy volunteers were recorded. Frequency domain analysis of extracted normal to normal interval (NN interval) data indicates significant difference in very low frequency (VLF) power, low frequency (LF) power and high frequency (HF) power, between the DM patients and control group. Time domain measures, standard deviation of NN interval (SDNN), root mean square of successive NN interval differences (RMSSD), successive NN intervals differing more than 50 ms (NN50 Count), percentage value of NN50 count (pNN50), HRV triangular index and triangular interpolation of NN intervals (TINN) also show significant difference between the DM patients and control group.

Traffic Behaviour of VoIP in a Simulated Access Network

Insufficient Quality of Service (QoS) of Voice over Internet Protocol (VoIP) is a growing concern that has lead the need for research and study. In this paper we investigate the performance of VoIP and the impact of resource limitations on the performance of Access Networks. The impact of VoIP performance in Access Networks is particularly important in regions where Internet resources are limited and the cost of improving these resources is prohibitive. It is clear that perceived VoIP performance, as measured by mean opinion score [2] in experiments, where subjects are asked to rate communication quality, is determined by end-to-end delay on the communication path, delay variation, packet loss, echo, the coding algorithm in use and noise. These performance indicators can be measured and the affect in the Access Network can be estimated. This paper investigates the congestion in the Access Network to the overall performance of VoIP services with the presence of other substantial uses of internet and ways in which Access Networks can be designed to improve VoIP performance. Methods for analyzing the impact of the Access Network on VoIP performance will be surveyed and reviewed. This paper also considers some approaches for improving performance of VoIP by carrying out experiments using Network Simulator version 2 (NS2) software with a view to gaining a better understanding of the design of Access Networks.

Swine Flu Transmission Model in Risk and Non-Risk Human Population

The Swine flu outbreak in humans is due to a new strain of influenza A virus subtype H1N1 that derives in part from human influenza, avian influenza, and two separated strains of swine influenza. It can be transmitted from human to human. A mathematical model for the transmission of Swine flu is developed in which the human populations are divided into two classes, the risk and non-risk human classes. Each class is separated into susceptible, exposed, infectious, quarantine and recovered sub-classes. In this paper, we formulate the dynamical model of Swine flu transmission and the repetitive contacts between the people are also considered. We analyze the behavior for the transmission of this disease. The Threshold condition of this disease is found and numerical results are shown to confirm our theoretical predictions.

Protein Secondary Structure Prediction Using Parallelized Rule Induction from Coverings

Protein 3D structure prediction has always been an important research area in bioinformatics. In particular, the prediction of secondary structure has been a well-studied research topic. Despite the recent breakthrough of combining multiple sequence alignment information and artificial intelligence algorithms to predict protein secondary structure, the Q3 accuracy of various computational prediction algorithms rarely has exceeded 75%. In a previous paper [1], this research team presented a rule-based method called RT-RICO (Relaxed Threshold Rule Induction from Coverings) to predict protein secondary structure. The average Q3 accuracy on the sample datasets using RT-RICO was 80.3%, an improvement over comparable computational methods. Although this demonstrated that RT-RICO might be a promising approach for predicting secondary structure, the algorithm-s computational complexity and program running time limited its use. Herein a parallelized implementation of a slightly modified RT-RICO approach is presented. This new version of the algorithm facilitated the testing of a much larger dataset of 396 protein domains [2]. Parallelized RTRICO achieved a Q3 score of 74.6%, which is higher than the consensus prediction accuracy of 72.9% that was achieved for the same test dataset by a combination of four secondary structure prediction methods [2].

The Effect of Dynamic Eccentricity on Induction Machine Stator Currents (Part A)

Current spectrums of a high power induction machine was calculated for the cases of full symmetry, static and dynamic eccentricity. The calculations involve integration of 93 electrical plus four mechanical ordinary differential equations. Electrical equations account for variable inductances affected by slotting and eccentricities. The calculations were followed by Fourier analysis of the stator currents in steady state operation. The paper presents the stator current spectrums in full symmetry, static and dynamic eccentricity cases, and demonstrates the harmonics present in each case. The effect of dynamic eccentricity is demonstrating via comparing the current spectrums related to dynamic eccentricity cases with the full symmetry one. The paper includes one case study, refers to dynamic eccentricity, to present the spectrum of the measured current and demonstrate the existence of the harmonics related to dynamic eccentricity. The zooms of current spectrums around the main slot harmonic zone are included to simplify the comparison and prove the existence of the dynamic eccentricity harmonics in both calculated and measured current spectrums.

Effect of Isfahan Refinery, Power Plant and Petrochemical on Borkhar District Soil

This study aimed to evaluate regional soil Borkhar of the metals Lead has been made. In this field study fires visits to the regions. The limit of this study located in the East refineries, petrochemical and power plant to 20 km was selected. The 41 soil samples from depths of 0 to 10 cm in area and were randomized. Soil samples were transported to the laboratory and by air was dry and passed through 2-mil thickness sieve. In the laboratory of physical and chemical characteristics and concentrations of total absorption was measured. The results showed that the amount of lead in soil in many parts of the range higher than the standard limit. Survey maps show that the lead spatial distribution of the region does not special pattern.

1-D Modeling of Hydrate Decomposition in Porous Media

This paper describes a one-dimensional numerical model for natural gas production from the dissociation of methane hydrate in hydrate-capped gas reservoir under depressurization and thermal stimulation. Some of the hydrate reservoirs discovered are overlying a free-gas layer, known as hydrate-capped gas reservoirs. These reservoirs are thought to be easiest and probably the first type of hydrate reservoirs to be produced. The mathematical equations that can be described this type of reservoir include mass balance, heat balance and kinetics of hydrate decomposition. These non-linear partial differential equations are solved using finite-difference fully implicit scheme. In the model, the effect of convection and conduction heat transfer, variation change of formation porosity, the effect of using different equations of state such as PR and ER and steam or hot water injection are considered. In addition distributions of pressure, temperature, saturation of gas, hydrate and water in the reservoir are evaluated. It is shown that the gas production rate is a sensitive function of well pressure.

A New Framework to Model a Secure E-Commerce System

The existing information system (IS) developments methods are not met the requirements to resolve the security related IS problems and they fail to provide a successful integration of security and systems engineering during all development process stages. Hence, the security should be considered during the whole software development process and identified with the requirements specification. This paper aims to propose an integrated security and IS engineering approach in all software development process stages by using i* language. This proposed framework categorizes into three separate parts: modelling business environment part, modelling information technology system part and modelling IS security part. The results show that considering security IS goals in the whole system development process can have a positive influence on system implementation and better meet business expectations.

Improvement Plant Layout Using Systematic Layout Planning (SLP) for Increased Productivity

The objective of this research is to study plant layout of iron manufacturing based on the systematic layout planning pattern theory (SLP) for increased productivity. In this case study, amount of equipments and tools in iron production are studied. The detailed study of the plant layout such as operation process chart, flow of material and activity relationship chart has been investigated. The new plant layout has been designed and compared with the present plant layout. The SLP method showed that new plant layout significantly decrease the distance of material flow from billet cutting process until keeping in ware house.

Creating the Color Panoramic View using Medley of Grayscale and Color Partial Images

Panoramic view generation has always offered novel and distinct challenges in the field of image processing. Panoramic view generation is nothing but construction of bigger view mosaic image from set of partial images of the desired view. The paper presents a solution to one of the problems of image seascape formation where some of the partial images are color and others are grayscale. The simplest solution could be to convert all image parts into grayscale images and fusing them to get grayscale image panorama. But in the multihued world, obtaining the colored seascape will always be preferred. This could be achieved by picking colors from the color parts and squirting them in grayscale parts of the seascape. So firstly the grayscale image parts should be colored with help of color image parts and then these parts should be fused to construct the seascape image. The problem of coloring grayscale images has no exact solution. In the proposed technique of panoramic view generation, the job of transferring color traits from reference color image to grayscale image is done by palette based method. In this technique, the color palette is prepared using pixel windows of some degrees taken from color image parts. Then the grayscale image part is divided into pixel windows with same degrees. For every window of grayscale image part the palette is searched and equivalent color values are found, which could be used to color grayscale window. For palette preparation we have used RGB color space and Kekre-s LUV color space. Kekre-s LUV color space gives better quality of coloring. The searching time through color palette is improved over the exhaustive search using Kekre-s fast search technique. After coloring the grayscale image pieces the next job is fusion of all these pieces to obtain panoramic view. For similarity estimation between partial images correlation coefficient is used.

Parametric Study of Confined Turbulent Impinging Slot Jets upon a Flat Plate

In the present paper, a numerical investigation has been carried out to classify and clarify the effects of paramount parameters on turbulent impinging slot jets. The effects of nozzle-s exit turbulent intensity, distance between nozzle and impinging plate are studied at Reynolds number 5000 and 20000. In addition, the effect of Mach number that is varied between 0.3-0.8 at a constant Reynolds number 133000 is investigated to elucidate the effect of compressibility in impinging jet upon a flat plate. The wall that is located at the same level with nozzle-s exit confines the flow. A compressible finite volume solver is implemented for simulation the flow behavior. One equation Spalart-Allmaras turbulent model is used to simulate turbulent flow at this study. Assessment of the Spalart-Allmaras turbulent model at high nozzle to plate distance, and giving enough insights to characterize the effect of Mach number at high Reynolds number for the complex impinging jet flow are the remarkable results of this study.

Population Trend of Canola Aphid, Lipaphis Erysimi (Kalt.) (Homoptera: Aphididae) and its Associated Natural Enemies in Different Brassica Lines along with the Effect of Gamma Radiation on Their Population

Studies regarding the determination of population trend of Lipaphis erysimi (kalt.) and its associated natural enemies in different Brassica lines along with the effect of gamma radiation on their population were conducted at Agricultural Research Farm, Malakandher, Khyber Pakhtunkhwa Agricultural University Peshawar during spring 2006. Three different Brassica lines F6B3, F6B6 and F6B7 were used, which were replicated four times in Randomized Complete Block Design. The data revealed that aphid infestation invariably stated in all three varieties during last week of February 2006 (1st observation). The peak population of 4.39 aphids leaf-1 was s recorded during 2nd week of March and lowest population of 1.02 aphids leaf-1 was recorded during 5th week of March. The species of lady bird beetle (Coccinella septempunctata) and Syrphid fly (Syrphus balteatus) first appeared on 24th February with a mean number of 0.40 lady bird beetle leaf-1 and 0.87 Syrphid fly leaf-1, respectively. At the time when aphid population started to increase the peak population of C. septempunctata (0.70 lady bird beetle leaf- 1) and S. balteatus (1.04 syrphid fly leaf-1) was recorded on the 2nd week of March. Chrysoperla carnea appeared in the 1st week of March and their peak population was recorded during the 3rd week of March with mean population of 1.46 C. carnea leaf-1. Among all the Brassica lines, F6B7 showed comparatively more resistance as compared to F6B3 F6B6. F6B3 showed least resistance against L. erysimi, which was found to be the most susceptible cultivar. F6B7 was also found superior in terms of natural enemies. Maximum number of all natural enemies was recorded on this variety followed by F6B6. Lowest number of natural enemies was recorded in F6B3. No significant effect was recorded for the effect of gamma radiation on the population of aphids, natural enemies and on the varieties.