Interference Reduction Technique in Multistage Multiuser Detector for DS-CDMA System

This paper presents the results related to the interference reduction technique in multistage multiuser detector for asynchronous DS-CDMA system. To meet the real-time requirements for asynchronous multiuser detection, a bit streaming, cascade architecture is used. An asynchronous multiuser detection involves block-based computations and matrix inversions. The paper covers iterative-based suboptimal schemes that have been studied to decrease the computational complexity, eliminate the need for matrix inversions, decreases the execution time, reduces the memory requirements and uses joint estimation and detection process that gives better performance than the independent parameter estimation method. The stages of the iteration use cascaded and bits processed in a streaming fashion. The simulation has been carried out for asynchronous DS-CDMA system by varying one parameter, i.e., number of users. The simulation result exhibits that system gives optimum bit error rate (BER) at 3rd stage for 15-users.

Automatic Generation Control of Multi-Area Electric Energy Systems Using Modified GA

A modified Genetic Algorithm (GA) based optimal selection of parameters for Automatic Generation Control (AGC) of multi-area electric energy systems is proposed in this paper. Simulations on multi-area reheat thermal system with and without consideration of nonlinearity like governor dead band followed by 1% step load perturbation is performed to exemplify the optimum parameter search. In this proposed method, a modified Genetic Algorithm is proposed where one point crossover with modification is employed. Positional dependency in respect of crossing site helps to maintain diversity of search point as well as exploitation of already known optimum value. This makes a trade-off between exploration and exploitation of search space to find global optimum in less number of generations. The proposed GA along with decomposition technique as developed has been used to obtain the optimum megawatt frequency control of multi-area electric energy systems. Time-domain simulations are conducted with trapezoidal integration along with decomposition technique. The superiority of the proposed method over existing one is verified from simulations and comparisons.

Performance Evaluation of A Stratified Chilled- Water Thermal Storage System

In countries with hot climates, air-conditioning forms a large proportion of annual peak electrical demand, requiring expansion of power plants to meet the peak demand, which goes unused most of the time. Use of well-designed cool storage can offset the peak demand to a large extent. In this study, an air conditioning system with naturally stratified storage tank was designed, constructed and tested. A new type of diffuser was designed and used in this study. Factors that influence the performance of chilled water storage tanks were investigated. The results indicated that stratified storage tank consistently stratified well without any physical barrier. Investigation also showed that storage efficiency decreased with increasing flow rate due to increased mixing of warm and chilled water. Diffuser design and layout primarily affected the mixing near the inlet diffuser and the extent of this mixing had primary influence on the shape of the thermocline. The heat conduction through tank walls and through the thermocline caused widening of mixed volume. Thermal efficiency of stratified storage tanks was as high as 90 percent, which indicates that stratified tanks can effectively be used as a load management technique.

Simulation of the Pedestrian Flow in the Tawaf Area Using the Social Force Model

In today-s modern world, the number of vehicles is increasing on the road. This causes more people to choose walking instead of traveling using vehicles. Thus, proper planning of pedestrians- paths is important to ensure the safety of pedestrians in a walking area. Crowd dynamics study the pedestrians- behavior and modeling pedestrians- movement to ensure safety in their walking paths. To date, many models have been designed to ease pedestrians- movement. The Social Force Model is widely used among researchers as it is simpler and provides better simulation results. We will discuss the problem regarding the ritual of circumambulating the Ka-aba (Tawaf) where the entrances to this area are usually congested which worsens during the Hajj season. We will use the computer simulation model SimWalk which is based on the Social Force Model to simulate the movement of pilgrims in the Tawaf area. We will first discuss the effect of uni and bi-directional flows at the gates. We will then restrict certain gates to the area as the entrances only and others as exits only. From the simulations, we will study the effect of the distance of other entrances from the beginning line and their effects on the duration of pilgrims circumambulate Ka-aba. We will distribute the pilgrims at the different entrances evenly so that the congestion at the entrances can be reduced. We would also discuss the various locations and designs of barriers at the exits and its effect on the time taken for the pilgrims to exit the Tawaf area.

Himmapan Creatures: The Tactile Texture Designed for the Blind

The main purpose of this research aimed to create tactile texture designed media for the blind used for extra learning outside classrooms in order to enhance imagination of the blind about Himmapan creatures, furthermore, the main objective of the research focused on improving the visual disabled perception to be equal to normal people. The target group of the research is blinded students studying in The Bangkok school for the blind between grade 4-6 in the second semester of 2011 who are able to read the braille language. The research methodology consisted of the field study and the documentary study related to the blind, tactile texture designed media and Himmapan creatures. 10 pictures of tactile texture designed media were created in the designing process which began after the analysis had conducted based the primary and secondary data. The works had presented to experts in the visual disabled field who evaluated the works. After approval, the works used as prototype to teach the blind. KeywordsBlind, Himmapan Creatures, Tactile Texture.

How to Connect User Research and not so Forthcoming Technology Scenarios – The Extended Home Environment Case Study

This paper draws a methodological framework adopted within an internal Telecomitalia project aimed to identify, on a user centred base, the potential interest towards a technological scenario aimed to extend on a personal bubble the typical communication and media fruition home environment. The problem is that involving user in the early stage of the development of such disruptive technology scenario asking users opinions on something that users actually do not manage even in a rough manner could lead to wrong or distorted results. For that reason we chose an approach that indirectly aim to understand users hidden needs in order to obtain a meaningful picture of the possible interest for a technological proposition non yet easily understandable.

Seismic Control of Tall Building Using a New Optimum Controller Based on GA

This paper emphasizes on the application of genetic algorithm (GA) to optimize the parameters of the TMD for achieving the best results in the reduction of the building response under earthquake excitations. The Integral of the Time multiplied Absolute value of the Error (ITAE) based on relative displacement of all floors in the building is taken as a performance index of the optimization criterion. The problem of robustly TMD controller design is formatted as an optimization problem based on the ITAE performance index to be solved using GA that has a story ability to find the most optimistic results. An 11–story realistic building, located in the city of Rasht, Iran is considered as a test system to demonstrate effectiveness of the proposed GA based TMD (GATMD) controller without specifying which mode should be controlled. The results of the proposed GATMD controller are compared with the uncontrolled structure through timedomain simulation and some performance indices. The results analysis reveals that the designed GA based TMD controller has an excellent capability in reduction of the seismically excited example building and the ITAE performance, that is so for remains as unknown, can be introduced a new criteria - method for structural dynamic design.

Fish Marketing: A Panacea towards Sustainable Agriculture in Ogun State, Nigeria

This study assessed fish marketing as panacea towards sustainable agriculture in Ogun State, Nigeria. Multi-stage sampling technique was used in the selection of 150 fish marketers for this study. Descriptive statistics were used for the objectives while Product Pearson Moment Correlation was used to test the hypothesis. Result of the findings revealed that the mean age of the respondents was 38.60 years. Majority (93.33%) of the respondents had acceptable levels of formal education. Many (44.00%) of the respondents had spent 1-5 years in fish marketing. The average quantity of fish sold in a day was 94.10kg. However, efficient fish marketing were hindered by inadequate processing equipment, storage rooms and ice holding facilities (86.67%). There was a significant relationship between socio-economic characteristics and profit realized from fish marketing (p < 0.05). It was recommended that storage and warehousing facilities should be provided to the fish marketers in the study area.

Turbine Speed Variation Study in Gas Power Plant for an Active Generator

This research deals with investigations on the “Active Generator" under rotor speed variations and output frequency control. It runs at turbine speed and it is connected to a three phase electrical power grid which has its own frequency different from turbine frequency. In this regard the set composed of a four phase synchronous generator and a natural commutated matrix converter (NCMC) made with thyristors, is called active generator. It replaces a classical mechanical gearbox which introduces many drawbacks. The main idea in this article is the presentation of frequency control at grid side when turbine runs at variable speed. Frequency control has been done by linear and step variations of the turbine speed. Relation between turbine speed (frequency) and main grid zero sequence voltage frequency is presented.

Optimized Detection in Multi-Antenna System using Particle Swarm Algorithm

In this paper we propose a Particle Swarm heuristic optimized Multi-Antenna (MA) system. Efficient MA systems detection is performed using a robust stochastic evolutionary computation algorithm based on movement and intelligence of swarms. This iterative particle swarm optimized (PSO) detector significantly reduces the computational complexity of conventional Maximum Likelihood (ML) detection technique. The simulation results achieved with this proposed MA-PSO detection algorithm show near optimal performance when compared with ML-MA receiver. The performance of proposed detector is convincingly better for higher order modulation schemes and large number of antennas where conventional ML detector becomes non-practical.

Effects of Competitive Strategies on Building Production Innovation in Construction Companies

This research study aims to identify the impact of two factors –growth and competitive strategies- on a set of building production innovation strategies. It was conducted a questionery survey to collect data from construction professionals and it was asked them the importance level of predicted innovation strategies for corporate strategies. Multiple analysis of variance (MANOVA) was employed to see the main and interaction effects of corporate strategies on building innovation strategies. The results indicate that growth strategies such as entering in a new a market or new project types has a greater effect on innovation strategies rather than competitive strategies such as cost leadership or differentiation strategies. However the interaction effect of competitive strategies and growth strategies on innovation strategies is much bigger than the only effect of competitive strategies. It was also analyzed the descriptive statistics of innovation strategies for different competitive and growth strategy types.

Boundary-Element-Based Finite Element Methods for Helmholtz and Maxwell Equations on General Polyhedral Meshes

We present new finite element methods for Helmholtz and Maxwell equations on general three-dimensional polyhedral meshes, based on domain decomposition with boundary elements on the surfaces of the polyhedral volume elements. The methods use the lowest-order polynomial spaces and produce sparse, symmetric linear systems despite the use of boundary elements. Moreover, piecewise constant coefficients are admissible. The resulting approximation on the element surfaces can be extended throughout the domain via representation formulas. Numerical experiments confirm that the convergence behavior on tetrahedral meshes is comparable to that of standard finite element methods, and equally good performance is attained on more general meshes.

Predicting the Three Major Dimensions of the Learner-s Emotions from Brainwaves

This paper investigates how the use of machine learning techniques can significantly predict the three major dimensions of learner-s emotions (pleasure, arousal and dominance) from brainwaves. This study has adopted an experimentation in which participants were exposed to a set of pictures from the International Affective Picture System (IAPS) while their electrical brain activity was recorded with an electroencephalogram (EEG). The pictures were already rated in a previous study via the affective rating system Self-Assessment Manikin (SAM) to assess the three dimensions of pleasure, arousal, and dominance. For each picture, we took the mean of these values for all subjects used in this previous study and associated them to the recorded brainwaves of the participants in our study. Correlation and regression analyses confirmed the hypothesis that brainwave measures could significantly predict emotional dimensions. This can be very useful in the case of impassive, taciturn or disabled learners. Standard classification techniques were used to assess the reliability of the automatic detection of learners- three major dimensions from the brainwaves. We discuss the results and the pertinence of such a method to assess learner-s emotions and integrate it into a brainwavesensing Intelligent Tutoring System.

Classifier Combination Approach in Motion Imagery Signals Processing for Brain Computer Interface

In this study we focus on improvement performance of a cue based Motor Imagery Brain Computer Interface (BCI). For this purpose, data fusion approach is used on results of different classifiers to make the best decision. At first step Distinction Sensitive Learning Vector Quantization method is used as a feature selection method to determine most informative frequencies in recorded signals and its performance is evaluated by frequency search method. Then informative features are extracted by packet wavelet transform. In next step 5 different types of classification methods are applied. The methodologies are tested on BCI Competition II dataset III, the best obtained accuracy is 85% and the best kappa value is 0.8. At final step ordered weighted averaging (OWA) method is used to provide a proper aggregation classifiers outputs. Using OWA enhanced system accuracy to 95% and kappa value to 0.9. Applying OWA just uses 50 milliseconds for performing calculation.

Utilization of Sugarcane Bagasses for Lactic Acid Production by acid Hydrolysis and Fermentation using Lactobacillus sp

Sugarcane bagasses are one of the most extensively used agricultural residues. Using acid hydrolysis and fermentation, conversion of sugarcane bagasses to lactic acid was technically and economically feasible. This research was concerned with the solubility of lignin in ammonium hydroxide, acid hydrolysis and lactic acid fermentation by Lactococcus lactis, Lactobacillus delbrueckii, Lactobacillus plantarum, and Lactobacillus casei. The lignin extraction results for different ammonium hydroxide concentrations showed that 10 % (v/v) NH4OH was favorable to lignin dissolution. Acid hydrolysis can be enhanced with increasing acid concentration and reaction temperature. The optimum glucose and xylose concentrations occurred at 121 ○C for 1 hour hydrolysis time in 10% sulphuric acid solution were 32 and 11 g/l, respectively. In order to investigate the significance of medium composition on lactic acid production, experiments were undertaken whereby a culture of Lactococcus lactis was grown under various glucose, peptone, yeast extract and xylose concentrations. The optimum medium was composed of 5 g/l glucose, 2.5 g/l xylose, 10 g/l peptone and 5 g/l yeast extract. Lactococcus lactis represents the most efficient for lactic acid production amongst those considered. The lactic acid fermentation by Lactococcus lactis after 72 hours gave the highest yield of 1.4 (g lactic acid per g reducing sugar).

Development of a Neural Network based Algorithm for Multi-Scale Roughness Parameters and Soil Moisture Retrieval

The overall objective of this paper is to retrieve soil surfaces parameters namely, roughness and soil moisture related to the dielectric constant by inverting the radar backscattered signal from natural soil surfaces. Because the classical description of roughness using statistical parameters like the correlation length doesn't lead to satisfactory results to predict radar backscattering, we used a multi-scale roughness description using the wavelet transform and the Mallat algorithm. In this description, the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each having a spatial scale. A second step in this study consisted in adapting a direct model simulating radar backscattering namely the small perturbation model to this multi-scale surface description. We investigated the impact of this description on radar backscattering through a sensitivity analysis of backscattering coefficient to the multi-scale roughness parameters. To perform the inversion of the small perturbation multi-scale scattering model (MLS SPM) we used a multi-layer neural network architecture trained by backpropagation learning rule. The inversion leads to satisfactory results with a relative uncertainty of 8%.

The Long Run Relationship between Exports and Imports in South Africa: Evidence from Cointegration Analysis

This study empirically examines the long run equilibrium relationship between South Africa’s exports and imports using quarterly data from 1985 to 2012. The theoretical framework used for the study is based on Johansen’s Maximum Likelihood cointegration technique which tests for both the existence and number of cointegration vectors that exists. The study finds that both the series are integrated of order one and are cointegrated. A statistically significant cointegrating relationship is found to exist between exports and imports. The study models this unique linear and lagged relationship using a Vector Error Correction Model (VECM). The findings of the study confirm the existence of a long run equilibrium relationship between exports and imports.

Analysis of Roasted and Ground Grains on the Seoul (Korea) Market for Their Contaminants of Aflatoxins, Ochratoxin A and Fusarium Toxins by LC-MS/MS

A sensitive and specific method for quantitative determination of aflatoxins(B1, B2, G1,G2), deoxynivalenol, fumonisin(B1,B2), ochratoxin A, zearalenone, T-2 and HT-2 in roasted and ground grains using liquid chromatography combined with tandem mass spectrometry. A double extraction using a phosphate buffer solution followed by methanol was applied to achieve effective co extraction of 11 mycotoxins. A multitoxin immunoaffinity column for all these mycotoxins was used to clean up the extract. The LODs of mycotoxins were 0.1~6.1 μg/kg, LOQs were 0.3~18.4 μg/kg. Forty seven samples collected from Seoul (Korea) for mycotoxin contamination monitoring. The results showed that the occurrence of zearalenone and deoxynivalenol were frequent. Zearalenone was detected in all samples and deoxynivalenol was detected in 80.9 % samples in the range 0.626 ~ 29.264 μg/kg and N.D ~ 48.332 μg/kg respectively. Fumonisins and ochratoxin A were detected in 46.8% samples and 17 % samples respectively, aflatoxins and T-2/HT-2 toxins were not detected all samples.

Adaptive Filtering of Heart Rate Signals for an Improved Measure of Cardiac Autonomic Control

In order to provide accurate heart rate variability indices of sympathetic and parasympathetic activity, the low frequency and high frequency components of an RR heart rate signal must be adequately separated. This is not always possible by just applying spectral analysis, as power from the high and low frequency components often leak into their adjacent bands. Furthermore, without the respiratory spectra it is not obvious that the low frequency component is not another respiratory component, which can appear in the lower band. This paper describes an adaptive filter, which aids the separation of the low frequency sympathetic and high frequency parasympathetic components from an ECG R-R interval signal, enabling the attainment of more accurate heart rate variability measures. The algorithm is applied to simulated signals and heart rate and respiratory signals acquired from an ambulatory monitor incorporating single lead ECG and inductive plethysmography sensors embedded in a garment. The results show an improvement over standard heart rate variability spectral measurements.

Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles

In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in different species and fitting this combined profile into a statistical model, it is possible to make predictions about the interaction status of two proteins. For this purpose, we apply a collection of pattern recognition techniques on the dataset of combined phylogenetic profiles of protein pairs. Support Vector Machines, Feature Extraction using ReliefF, Naive Bayes Classification, K-Nearest Neighborhood Classification, Decision Trees, and Random Forest Classification are the methods we applied for finding the classification method that best predicts the interaction status of protein pairs. Random Forest Classification outperformed all other methods with a prediction accuracy of 76.93%