Analyses of Wear Mechanisms Occurring During Machining of the Titanium Alloy Ti- 6Al-2Sn-4Zr-6Mo

Titanium alloys like the modern alloy Ti 6Al 2Sn 4Zr 6Mo (Ti-6246) combine excellent specific mechanical properties and corrosion resistance. On the other hand,due to their material characteristics, machining of these alloys is difficult to perform. The aim of the current study is the analyses of wear mechanisms of coated cemented carbide tools applied in orthogonal cutting experiments of Ti-6246 alloy. Round bars were machined with standard coated tools in dry conditions on a CNC latheusing a wide range of cutting speeds and cutting depths. Tool wear mechanisms were afterwards investigated by means of stereo microscopy, optical microscopy, confocal microscopy and scanning electron microscopy. Wear mechanisms included fracture of the tool tip (total failure) and abrasion. Specific wear features like crater wear, micro cracks and built-up edgeformation appeared depending of the mechanical and thermal conditions generated in the workpiece surface by the cutting action.

A New Divide and Conquer Software Process Model

The software system goes through a number of stages during its life and a software process model gives a standard format for planning, organizing and running a project. The article presents a new software development process model named as “Divide and Conquer Process Model", based on the idea first it divides the things to make them simple and then gathered them to get the whole work done. The article begins with the backgrounds of different software process models and problems in these models. This is followed by a new divide and conquer process model, explanation of its different stages and at the end edge over other models is shown.

Lattice Boltzmann Method for Turbulent Heat Transfer in Wavy Channel Flows

The hydrodynamic and thermal lattice Boltzmann methods are applied to investigate the turbulent convective heat transfer in the wavy channel flows. In this study, the turbulent phenomena are modeling by large-eddy simulations with the Smagorinsky model. As a benchmark, the laminar and turbulent backward-facing step flows are simulated first. The results give good agreement with other numerical and experimental data. For wavy channel flows, the distribution of Nusselt number and the skin-friction coefficients are calculated to evaluate the heat transfer effect and the drag force. It indicates that the vortices at the trough would affect the magnitude of drag and weaken the heat convection effects on the wavy surface. In turbulent cases, if the amplitude of the wavy boundary is large enough, the secondary vortices would be generated at troughs and contribute to the heat convection. Finally, the effects of different Re on the turbulent transport phenomena are discussed.

A Wind Farm Reduced Order Model Using Integral Manifold Theory

Due to the increasing penetration of wind energy, it is necessary to possess design tools that are able to simulate the impact of these installations in utility grids. In order to provide a net contribution to this issue a detailed wind park model has been developed and is briefly presented. However, the computational costs associated with the performance of such a detailed model in describing the behavior of a wind park composed by a considerable number of units may render its practical application very difficult. To overcome this problem integral manifolds theory has been applied to reduce the order of the detailed wind park model, and therefore create the conditions for the development of a dynamic equivalent which is able to retain the relevant dynamics with respect to the existing a.c. system. In this paper integral manifold method has been introduced for order reduction. Simulation results of the proposed method represents that integral manifold method results fit the detailed model results with a higher precision than singular perturbation method.

Multi-view Description of Real-Time Systems- Architecture

Real-time embedded systems should benefit from component-based software engineering to handle complexity and deal with dependability. In these systems, applications should not only be logically correct but also behave within time windows. However, in the current component based software engineering approaches, a few of component models handles time properties in a manner that allows efficient analysis and checking at the architectural level. In this paper, we present a meta-model for component-based software description that integrates timing issues. To achieve a complete functional model of software components, our meta-model focuses on four functional aspects: interface, static behavior, dynamic behavior, and interaction protocol. With each aspect we have explicitly associated a time model. Such a time model can be used to check a component-s design against certain properties and to compute the timing properties of component assemblies.

Extended Well-Founded Semantics in Bilattices

One of the most used assumptions in logic programming and deductive databases is the so-called Closed World Assumption (CWA), according to which the atoms that cannot be inferred from the programs are considered to be false (i.e. a pessimistic assumption). One of the most successful semantics of conventional logic programs based on the CWA is the well-founded semantics. However, the CWA is not applicable in all circumstances when information is handled. That is, the well-founded semantics, if conventionally defined, would behave inadequately in different cases. The solution we adopt in this paper is to extend the well-founded semantics in order for it to be based also on other assumptions. The basis of (default) negative information in the well-founded semantics is given by the so-called unfounded sets. We extend this concept by considering optimistic, pessimistic, skeptical and paraconsistent assumptions, used to complete missing information from a program. Our semantics, called extended well-founded semantics, expresses also imperfect information considered to be missing/incomplete, uncertain and/or inconsistent, by using bilattices as multivalued logics. We provide a method of computing the extended well-founded semantics and show that Kripke-Kleene semantics is captured by considering a skeptical assumption. We show also that the complexity of the computation of our semantics is polynomial time.

Investigation of Shear Thickening Liquid Protection Fibrous Material

The stab resistance performance of newly developed fabric composites composed of hexagonal paper honeycombs, filled with shear thickening fluid (STF), and woven Kevlar® fabric or UHMPE was investigated in this study. The STF was prepared by dispersing submicron SiO2 particles into polyethylene glycol (PEG). Our results indicate that the STF-Kevlar composite possessed lower penetration depth than that of neat Kevlar. In other words, the STF-Kevlar composite can attain the same energy level in stab-resistance test with fewer layers of Kevlar fabrics than that of the neat Kevlar fabrics. It also indicates that STF can be used for the fabrication of flexible body armors and can provide improved protection against stab threats. We found that the stab resistance of the STF-Kevlar composite increases with the increase of SiO2 concentration in STF. Moreover, the silica particles functionalized with silane coupling agent can further improve the stab resistance.

Featured based Segmentation of Color Textured Images using GLCM and Markov Random Field Model

In this paper, we propose a new image segmentation approach for colour textured images. The proposed method for image segmentation consists of two stages. In the first stage, textural features using gray level co-occurrence matrix(GLCM) are computed for regions of interest (ROI) considered for each class. ROI acts as ground truth for the classes. Ohta model (I1, I2, I3) is the colour model used for segmentation. Statistical mean feature at certain inter pixel distance (IPD) of I2 component was considered to be the optimized textural feature for further segmentation. In the second stage, the feature matrix obtained is assumed to be the degraded version of the image labels and modeled as Markov Random Field (MRF) model to model the unknown image labels. The labels are estimated through maximum a posteriori (MAP) estimation criterion using ICM algorithm. The performance of the proposed approach is compared with that of the existing schemes, JSEG and another scheme which uses GLCM and MRF in RGB colour space. The proposed method is found to be outperforming the existing ones in terms of segmentation accuracy with acceptable rate of convergence. The results are validated with synthetic and real textured images.

Metallographic Analysis of Laser and Mechanically Formed HSLA Steel

This research was conducted to develop a correlation between microstructure of HSLA steel and the mechanical properties that occur as a result of both laser and mechanical forming processes of the metal. The technique of forming flat metals by applying laser beams is a relatively new concept in the manufacturing industry. However, the effects of laser energy on the stability of metal alloy phases have not yet been elucidated in terms of phase transformations and microhardness. In this work, CO2 laser source was used to irradiate the surface of a flat metal then the microstructure and microhardness of the metal were studied on the formed specimen. The extent to which the microstructure changed depended on the heat inputs of up to 1000 J/cm2 with cooling rates of about 4.8E+02 K/s. Experimental results revealed that the irradiated surface of a HSLA steel had transformed to austenitic structure during the heating process.

Weight-Based Query Optimization System Using Buffer

Fast retrieval of data has been a need of user in any database application. This paper introduces a buffer based query optimization technique in which queries are assigned weights according to their number of execution in a query bank. These queries and their optimized executed plans are loaded into the buffer at the start of the database application. For every query the system searches for a match in the buffer and executes the plan without creating new plans.

Experimental Investigation of a Mixture of Methane, Carbon Dioxide and Nitrogen Gas Hydrate Formation in Water-Based Drilling Mud in the Presence or Absence of Thermodynamic Inhibitors

Gas hydrates form when a number of factors co-exist: free water, hydrocarbon gas, cold temperatures and high pressures are typical of the near mud-line conditions in a deepwater drilling operation. Subsequently, when drilling with water based muds, particularly on exploration wells, the risk of hydrate formation associated with a gas influx is high. The consequences of gas hydrate formation while drilling are severe, and as such, every effort should be made to ensure the risk of hydrate formation is either eliminated or significantly reduced. Thermodynamic inhibitors are used to reduce the free water content of a drilling mud, and thus suppress the hydrate formation temperature. Very little experimental work has been performed by oil and gas research companies on the evaluation of gas hydrate formation in a water-based drilling mud. The main objective of this paper is to investigate the experimental gas hydrate formation for a mixture of methane, carbon dioxide & nitrogen in a water-based drilling mud with or without presence of different concentrations of thermodynamic inhibitors including pure salt and a combination of salt with methanol or ethylene glycol at different concentrations in a static loop apparatus. The experiments were performed using a static loop apparatus consisting of a 2.4307 cm inside diameter and 800 cm long pipe. All experiments were conducted at 2200 psia. The temperature in the loop was decreased at a rate of 3.33 °F/h from initial temperature of 80 °F.

Distributed Relay Selection and Channel Choice in Cognitive Radio Network

In this paper, we study the cooperative communications where multiple cognitive radio (CR) transmit-receive pairs competitive maximize their own throughputs. In CR networks, the influences of primary users and the spectrum availability are usually different among CR users. Due to the existence of multiple relay nodes and the different spectrum availability, each CR transmit-receive pair should not only select the relay node but also choose the appropriate channel. For this distributed problem, we propose a game theoretic framework to formulate this problem and we apply a regret-matching learning algorithm which is leading to correlated equilibrium. We further formulate a modified regret-matching learning algorithm which is fully distributed and only use the local information of each CR transmit-receive pair. This modified algorithm is more practical and suitable for the cooperative communications in CR network. Simulation results show the algorithm convergence and the modified learning algorithm can achieve comparable performance to the original regretmatching learning algorithm.

Nickel on Inner Surface and Stainless Steel on Outer Surface for Functionally Graded Cylindrical Shell

Study is on the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. The effects of the FGM configuration are studied by studying the frequencies of FG cylindrical shells. In this case FG cylindrical shell has Nickel on its inner surface and stainless steel on its outer surface. The study is carried out based on third order shear deformation shell theory. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of configurations of the constituent materials on the frequencies. The properties are graded in the thickness direction according to the volume fraction power-law distribution. Results are presented on the frequency characteristics, the influence of the constituent various volume fractions on the frequencies.

Enhanced Clustering Analysis and Visualization Using Kohonen's Self-Organizing Feature Map Networks

Cluster analysis is the name given to a diverse collection of techniques that can be used to classify objects (e.g. individuals, quadrats, species etc). While Kohonen's Self-Organizing Feature Map (SOFM) or Self-Organizing Map (SOM) networks have been successfully applied as a classification tool to various problem domains, including speech recognition, image data compression, image or character recognition, robot control and medical diagnosis, its potential as a robust substitute for clustering analysis remains relatively unresearched. SOM networks combine competitive learning with dimensionality reduction by smoothing the clusters with respect to an a priori grid and provide a powerful tool for data visualization. In this paper, SOM is used for creating a toroidal mapping of two-dimensional lattice to perform cluster analysis on results of a chemical analysis of wines produced in the same region in Italy but derived from three different cultivators, referred to as the “wine recognition data" located in the University of California-Irvine database. The results are encouraging and it is believed that SOM would make an appealing and powerful decision-support system tool for clustering tasks and for data visualization.

Multicast Optimization Techniques using Best Effort Genetic Algorithms

Multicast Network Technology has pervaded our lives-a few examples of the Networking Techniques and also for the improvement of various routing devices we use. As we know the Multicast Data is a technology offers many applications to the user such as high speed voice, high speed data services, which is presently dominated by the Normal networking and the cable system and digital subscriber line (DSL) technologies. Advantages of Multi cast Broadcast such as over other routing techniques. Usually QoS (Quality of Service) Guarantees are required in most of Multicast applications. The bandwidth-delay constrained optimization and we use a multi objective model and routing approach based on genetic algorithm that optimizes multiple QoS parameters simultaneously. The proposed approach is non-dominated routes and the performance with high efficiency of GA. Its betterment and high optimization has been verified. We have also introduced and correlate the result of multicast GA with the Broadband wireless to minimize the delay in the path.

Developing the Color Temperature Histogram Method for Improving the Content-Based Image Retrieval

This paper proposes a new method for image searches and image indexing in databases with a color temperature histogram. The color temperature histogram can be used for performance improvement of content–based image retrieval by using a combination of color temperature and histogram. The color temperature histogram can be represented by a range of 46 colors. That is more than the color histogram and the dominant color temperature. Moreover, with our method the colors that have the same color temperature can be separated while the dominant color temperature can not. The results showed that the color temperature histogram retrieved an accurate image more often than the dominant color temperature method or color histogram method. This also took less time so the color temperature can be used for indexing and searching for images.

Application of an in vitro Alveolus Model in Evaluating the Alveolar Response to Pressure- Induced Injury

In an effort to understand the preliminary effects of aerodynamic stress on alveolar epithelial cells, we developed a multifluidic cell culture platform capable of supporting alveolar cultures at an air-liquid interface under constant air flow and exposure to varying pressure stimuli on the apical side while providing nourishment on the basolateral plane. Our current study involved utilizing the platform to study the effect of basement membrane coating and addition of dexamethasone on cellular response to pressure in A549 and H441 alveolar epithelial cells.

Design of Gravity Dam by Genetic Algorithms

The design of a gravity dam is performed through an interactive process involving a preliminary layout of the structure followed by a stability and stress analysis. This study presents a method to define the optimal top width of gravity dam with genetic algorithm. To solve the optimization task (minimize the cost of the dam), an optimization routine based on genetic algorithms (GAs) was implemented into an Excel spreadsheet. It was found to perform well and GA parameters were optimized in a parametric study. Using the parameters found in the parametric study, the top width of gravity dam optimization was performed and compared to a gradient-based optimization method (classic method). The accuracy of the results was within close proximity. In optimum dam cross section, the ratio of is dam base to dam height is almost equal to 0.85, and ratio of dam top width to dam height is almost equal to 0.13. The computerized methodology may provide the help for computation of the optimal top width for a wide range of height of a gravity dam.

Multi-Objective Optimization of Gas Turbine Power Cycle

Because of importance of energy, optimization of power generation systems is necessary. Gas turbine cycles are suitable manner for fast power generation, but their efficiency is partly low. In order to achieving higher efficiencies, some propositions are preferred such as recovery of heat from exhaust gases in a regenerator, utilization of intercooler in a multistage compressor, steam injection to combustion chamber and etc. However thermodynamic optimization of gas turbine cycle, even with above components, is necessary. In this article multi-objective genetic algorithms are employed for Pareto approach optimization of Regenerative-Intercooling-Gas Turbine (RIGT) cycle. In the multiobjective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are entropy generation of RIGT cycle (Ns) derives using Exergy Analysis and Gouy-Stodola theorem, thermal efficiency and the net output power of RIGT Cycle. These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters such as compressor pressure ratio (Rp), excess air in combustion (EA), turbine inlet temperature (TIT) and inlet air temperature (T0). At the first stage single objective optimization has been investigated and the method of Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used for multi-objective optimization. Optimization procedures are performed for two and three objective functions and the results are compared for RIGT Cycle. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of three objective optimization the results are given in tables.

Enhancing Retrieval Effectiveness of Malay Documents by Exploiting Implicit Semantic Relationship between Words

Phrases has a long history in information retrieval, particularly in commercial systems. Implicit semantic relationship between words in a form of BaseNP have shown significant improvement in term of precision in many IR studies. Our research focuses on linguistic phrases which is language dependent. Our results show that using BaseNP can improve performance although above 62% of words formation in Malay Language based on derivational affixes and suffixes.