Coupled Dynamics in Host-Guest Complex Systems Duplicates Emergent Behavior in the Brain

The ability of the brain to organize information and generate the functional structures we use to act, think and communicate, is a common and easily observable natural phenomenon. In object-oriented analysis, these structures are represented by objects. Objects have been extensively studied and documented, but the process that creates them is not understood. In this work, a new class of discrete, deterministic, dissipative, host-guest dynamical systems is introduced. The new systems have extraordinary self-organizing properties. They can host information representing other physical systems and generate the same functional structures as the brain does. A simple mathematical model is proposed. The new systems are easy to simulate by computer, and measurements needed to confirm the assumptions are abundant and readily available. Experimental results presented here confirm the findings. Applications are many, but among the most immediate are object-oriented engineering, image and voice recognition, search engines, and Neuroscience.

Evaluation and Preparation of Crystal Modifications of Artesunate: In vivo Studies

Five crystal modifications of water insoluble artesunate were generated by recrystallizing it from various solvents with improved physicochemical properties. These generated crystal forms were characterized to select the most potent and soluble form. SEM of all the forms showed changes in external shape leading them to be different morphologically. DSC thermograms of Form III and Form V showed broad endotherm peaks at 83.04oC and 76.96oC prior to melting fusion of drug respectively. Calculated weight loss in TGA revealed that Form III and Form V are methanol and acetone solvates respectively. However, few additional peaks were appeared in XRPD pattern in these two solvate forms. All forms exhibit exothermic behavior in buffer and two solvates display maximum ease of molecular release from the lattice. Methanol and acetone solvates were found to be most soluble forms and exhibited higher antimalarial efficacy showing higher survival rate (83.3%) after 30 days.

Food Safety and Perceived Risk: A Case Study of Khao San Road, Bangkok, Thailand

Food safety is an important concern for holiday makers in foreign and unfamiliar tourist destinations. In fact, risk from food in these tourist destinations has an influence on tourist perception. This risk can potentially affect physical health and lead to an inability to pursue planned activities. The objective of this paper was to compare foreign tourists- demographics including gender, age and education level, with the level of perceived risk towards food safety. A total of 222 foreign tourists during their stay at Khao San Road in Bangkok were used as the sample. Independent- samples ttest, analysis of variance, and Least Significant Difference or LSD post hoc test were utilized. The findings revealed that there were few demographic differences in level of perceived risk among the foreign tourists. The post hoc test indicated a significant difference among the old and the young tourists, and between the higher and lower level of education. Ranks of tourists- perceived risk towards food safety unveiled some interesting results. Tourists- perceived risk of food safety in established restaurants can be ranked as i) cleanliness of dining utensils, ii) sanitation of food preparation area, and iii) cleanliness of food seasoning and ingredients. Whereas, the tourists- perceived risk of food safety in street food and drink can be ranked as i) cleanliness of stalls and pushcarts, ii) cleanliness of food sold, and iii) personal hygiene of street food hawkers or vendors.

Calculation of Heating Load for an Apartment Complex with Unit Building Method

As a simple to method estimate the plant heating energy capacity of an apartment complex, a new load calculation method has been proposed. The method which can be called as unit building method, predicts the heating load of the entire complex instead of summing up that of each apartment belonging to complex. Comparison of the unit heating load for various floor sizes between the present method and conventional approach shows a close agreement with dynamic load calculation code. Some additional calculations are performed to demonstrate it-s application examples.

Effect of S-Girdling on Fruit Growth and Fruit Quality of Wax Apple

The study was performed to evaluate the effect of Sgirdling, fruit thinning plus bagging with 2,4-D application, fruit thinning plus bagging on growth and quality of wax apple fruit. Girdling was applied three week before flowering. The 2,4-D was sprayed at the small bud and petal fall stage. The effect of all treatments on fruit growth was measured weekly. The physical and biochemical quality characteristics of the fruits were recorded. The results showed that no significant effect on number of bud among treatments. S-girdling, 2,4-D application produced the lowest bud drop, fruit drop compared to untreated control. Moreover, S-girdling enhanced faster fruit growth producing the best final fruit length and diameter than the control treatment. It was also observed that Sgirdling greatly increased fruit set, fruit weight as well as total soluble solid, reduced fruit crack, and titratable acidity. In conclusion, S-girdling had a distinctive and significant effect on most of the fruit quality characteristics assessed. Application 2,4-D was also recommended as the industry norm to increase fruit set, and fruit quality in wax apple.

Comparative Studies of Support Vector Regression between Reproducing Kernel and Gaussian Kernel

Support vector regression (SVR) has been regarded as a state-of-the-art method for approximation and regression. The importance of kernel function, which is so-called admissible support vector kernel (SV kernel) in SVR, has motivated many studies on its composition. The Gaussian kernel (RBF) is regarded as a “best" choice of SV kernel used by non-expert in SVR, whereas there is no evidence, except for its superior performance on some practical applications, to prove the statement. Its well-known that reproducing kernel (R.K) is also a SV kernel which possesses many important properties, e.g. positive definiteness, reproducing property and composing complex R.K by simpler ones. However, there are a limited number of R.Ks with explicit forms and consequently few quantitative comparison studies in practice. In this paper, two R.Ks, i.e. SV kernels, composed by the sum and product of a translation invariant kernel in a Sobolev space are proposed. An exploratory study on the performance of SVR based general R.K is presented through a systematic comparison to that of RBF using multiple criteria and synthetic problems. The results show that the R.K is an equivalent or even better SV kernel than RBF for the problems with more input variables (more than 5, especially more than 10) and higher nonlinearity.

Robotics, Education and Economy

Describes the current situation of educational Robotics "the State of the art" its concept, its evolution their niches of opportunity, academic and business and the importance of education and academic outreach. It shows that the development of high-tech automated educational materials influence the teaching-learning process and that communication between machines and humans is a reality.

Performance Enhancement of DWDM Systems Using HTE Configuration HTE Configuration for 1479-1555nm Wavelength Range

In this paper, the gain spectrum of EDFA has been broadened by implementing HTE configuration for S and C band. On using this configuration an amplification bandwidth of 76nm ranging from 1479nm to 1555nm with a peak gain of 26dB has been obtained.

Application of Machine Learning Methods to Online Test Error Detection in Semiconductor Test

As in today's semiconductor industries test costs can make up to 50 percent of the total production costs, an efficient test error detection becomes more and more important. In this paper, we present a new machine learning approach to test error detection that should provide a faster recognition of test system faults as well as an improved test error recall. The key idea is to learn a classifier ensemble, detecting typical test error patterns in wafer test results immediately after finishing these tests. Since test error detection has not yet been discussed in the machine learning community, we define central problem-relevant terms and provide an analysis of important domain properties. Finally, we present comparative studies reflecting the failure detection performance of three individual classifiers and three ensemble methods based upon them. As base classifiers we chose a decision tree learner, a support vector machine and a Bayesian network, while the compared ensemble methods were simple and weighted majority vote as well as stacking. For the evaluation, we used cross validation and a specially designed practical simulation. By implementing our approach in a semiconductor test department for the observation of two products, we proofed its practical applicability.

Simulation Model for Predicting Dengue Fever Outbreak

Dengue fever is prevalent in Malaysia with numerous cases including mortality recorded over the years. Public education on the prevention of the desease through various means has been carried out besides the enforcement of legal means to eradicate Aedes mosquitoes, the dengue vector breeding ground. Hence, other means need to be explored, such as predicting the seasonal peak period of the dengue outbreak and identifying related climate factors contributing to the increase in the number of mosquitoes. Simulation model can be employed for this purpose. In this study, we created a simulation of system dynamic to predict the spread of dengue outbreak in Hulu Langat, Selangor Malaysia. The prototype was developed using STELLA 9.1.2 software. The main data input are rainfall, temperature and denggue cases. Data analysis from the graph showed that denggue cases can be predicted accurately using these two main variables- rainfall and temperature. However, the model will be further tested over a longer time period to ensure its accuracy, reliability and efficiency as a prediction tool for dengue outbreak.

Parkinsons Disease Classification using Neural Network and Feature Selection

In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It-s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algorithm along with biomedical test values to diagnose Parkinson disease.Clinical diagnosis is done mostly by doctor-s expertise and experience.But still cases are reported of wrong diagnosis and treatment. Patients are asked to take number of tests for diagnosis.In many cases,not all the tests contribute towards effective diagnosis of a disease.Our work is to classify the presence of Parkinson disease with reduced number of attributes.Original,22 attributes are involved in classify.We use Information Gain to determine the attributes which reduced the number of attributes which is need to be taken from patients.The Artificial neural networks is used to classify the diagnosis of patients.Twenty-Two attributes are reduced to sixteen attributes.The accuracy is in training data set is 82.051% and in the validation data set is 83.333%.

The Effect of Innovation Factors to Customer Loyalty by Structural Equation Model

Innovation is being view from four areas of innovation, product, service, technology, and marketing. Whereas customer loyalty is composed of customer expectation, perceived quality, perceived value, corporate image, customer satisfaction, customer trust/confidence, customer commitment, customer complaint, and customer loyalty. This study aimed to investigate the influence of innovation factors to customer loyalty to GSM in the telecom companies where use of products and services. Structural Equation Modeling (SEM) using to analyze innovation factors. It was found the factor of innovation have significant influence on customer loyalty.

Numerical Analysis of Wind Loads on a Hemicylindrical Roof Building

The flow field over a three dimensional pole barn characterized by a cylindrical roof has been numerically investigated. Wind pressure and viscous loads acting on the agricultural building have been analyzed for several incoming wind directions, so as to evaluate the most critical load condition on the structure. A constant wind velocity profile, based on the maximum reference wind speed in the building site (peak gust speed worked out for 50 years return period) and on the local roughness coefficient, has been simulated. In order to contemplate also the hazard due to potential air wedging between the stored hay and the lower part of the ceiling, the effect of a partial filling of the barn has been investigated. The distribution of wind-induced loads on the structure have been determined, allowing a numerical quantification of the effect of wind direction on the induced stresses acting on a hemicylindrical roof.

A New Type of Integration Error and its Influence on Integration Testing Techniques

Testing is an activity that is required both in the development and maintenance of the software development life cycle in which Integration Testing is an important activity. Integration testing is based on the specification and functionality of the software and thus could be called black-box testing technique. The purpose of integration testing is testing integration between software components. In function or system testing, the concern is with overall behavior and whether the software meets its functional specifications or performance characteristics or how well the software and hardware work together. This explains the importance and necessity of IT for which the emphasis is on interactions between modules and their interfaces. Software errors should be discovered early during IT to reduce the costs of correction. This paper introduces a new type of integration error, presenting an overview of Integration Testing techniques with comparison of each technique and also identifying which technique detects what type of error.

Long-Term Simulation of Digestive Sound Signals by CEPSTRAL Technique

In this study, an investigation over digestive diseases has been done in which the sound acts as a detector medium. Pursue to the preprocessing the extracted signal in cepstrum domain is registered. After classification of digestive diseases, the system selects random samples based on their features and generates the interest nonstationary, long-term signals via inverse transform in cepstral domain which is presented in digital and sonic form as the output. This structure is updatable or on the other word, by receiving a new signal the corresponding disease classification is updated in the feature domain.

The Giant Component in a Random Subgraph of a Weak Expander

In this paper, we investigate the appearance of the giant component in random subgraphs G(p) of a given large finite graph family Gn = (Vn, En) in which each edge is present independently with probability p. We show that if the graph Gn satisfies a weak isoperimetric inequality and has bounded degree, then the probability p under which G(p) has a giant component of linear order with some constant probability is bounded away from zero and one. In addition, we prove the probability of abnormally large order of the giant component decays exponentially. When a contact graph is modeled as Gn, our result is of special interest in the study of the spread of infectious diseases or the identification of community in various social networks.

Classification Algorithms in Human Activity Recognition using Smartphones

Rapid advancement in computing technology brings computers and humans to be seamlessly integrated in future. The emergence of smartphone has driven computing era towards ubiquitous and pervasive computing. Recognizing human activity has garnered a lot of interest and has raised significant researches- concerns in identifying contextual information useful to human activity recognition. Not only unobtrusive to users in daily life, smartphone has embedded built-in sensors that capable to sense contextual information of its users supported with wide range capability of network connections. In this paper, we will discuss the classification algorithms used in smartphone-based human activity. Existing technologies pertaining to smartphone-based researches in human activity recognition will be highlighted and discussed. Our paper will also present our findings and opinions to formulate improvement ideas in current researches- trends. Understanding research trends will enable researchers to have clearer research direction and common vision on latest smartphone-based human activity recognition area.

Promoting Mathematical Understanding Using ICT in Teaching and Learning

Information and Communication Technologies (ICT) in mathematical education is a very active field of research and innovation, where learning is understood to be meaningful and grasping multiple linked representation rather than rote memorization, a great amount of literature offering a wide range of theories, learning approaches, methodologies and interpretations, are generally stressing the potentialities for teaching and learning using ICT. Despite the utilization of new learning approaches with ICT, students experience difficulties in learning concepts relevant to understanding mathematics, much remains unclear about the relationship between the computer environment, the activities it might support, and the knowledge that might emerge from such activities. Many questions that might arise in this regard: to what extent does the use of ICT help students in the process of understanding and solving tasks or problems? Is it possible to identify what aspects or features of students' mathematical learning can be enhanced by the use of technology? This paper will highlight the interest of the integration of information and communication technologies (ICT) into the teaching and learning of mathematics (quadratic functions), it aims to investigate the effect of four instructional methods on students- mathematical understanding and problem solving. Quantitative and qualitative methods are used to report about 43 students in middle school. Results showed that mathematical thinking and problem solving evolves as students engage with ICT activities and learn cooperatively.

Design of Digital Differentiator to Optimize Relative Error

It is observed that the Weighted least-square (WLS) technique, including the modifications, results in equiripple error curve. The resultant error as a percent of the ideal value is highly non-uniformly distributed over the range of frequencies for which the differentiator is designed. The present paper proposes a modification to the technique so that the optimization procedure results in lower maximum relative error compared to the ideal values. Simulation results for first order as well as higher order differentiators are given to illustrate the excellent performance of the proposed method.

Using Artificial Neural Network to Forecast Groundwater Depth in Union County Well

A concern that researchers usually face in different applications of Artificial Neural Network (ANN) is determination of the size of effective domain in time series. In this paper, trial and error method was used on groundwater depth time series to determine the size of effective domain in the series in an observation well in Union County, New Jersey, U.S. different domains of 20, 40, 60, 80, 100, and 120 preceding day were examined and the 80 days was considered as effective length of the domain. Data sets in different domains were fed to a Feed Forward Back Propagation ANN with one hidden layer and the groundwater depths were forecasted. Root Mean Square Error (RMSE) and the correlation factor (R2) of estimated and observed groundwater depths for all domains were determined. In general, groundwater depth forecast improved, as evidenced by lower RMSEs and higher R2s, when the domain length increased from 20 to 120. However, 80 days was selected as the effective domain because the improvement was less than 1% beyond that. Forecasted ground water depths utilizing measured daily data (set #1) and data averaged over the effective domain (set #2) were compared. It was postulated that more accurate nature of measured daily data was the reason for a better forecast with lower RMSE (0.1027 m compared to 0.255 m) in set #1. However, the size of input data in this set was 80 times the size of input data in set #2; a factor that may increase the computational effort unpredictably. It was concluded that 80 daily data may be successfully utilized to lower the size of input data sets considerably, while maintaining the effective information in the data set.