An Agent Oriented Approach to Operational Profile Management

Software reliability, defined as the probability of a software system or application functioning without failure or errors over a defined period of time, has been an important area of research for over three decades. Several research efforts aimed at developing models to improve reliability are currently underway. One of the most popular approaches to software reliability adopted by some of these research efforts involves the use of operational profiles to predict how software applications will be used. Operational profiles are a quantification of usage patterns for a software application. The research presented in this paper investigates an innovative multiagent framework for automatic creation and management of operational profiles for generic distributed systems after their release into the market. The architecture of the proposed Operational Profile MAS (Multi-Agent System) is presented along with detailed descriptions of the various models arrived at following the analysis and design phases of the proposed system. The operational profile in this paper is extended to comprise seven different profiles. Further, the criticality of operations is defined using a new composed metrics in order to organize the testing process as well as to decrease the time and cost involved in this process. A prototype implementation of the proposed MAS is included as proof-of-concept and the framework is considered as a step towards making distributed systems intelligent and self-managing.

Investigation of Self-Similarity Solution for Wake Flow of a Cylinder

The data measurement of mean velocity has been taken for the wake of single circular cylinder with three different diameters for two different velocities. The effects of change in diameter and in velocity are studied in self-similar coordinate system. The spatial variations of velocity defect and that of the half-width have been investigated. The results are compared with those published by H.Schlichting. In the normalized coordinates, it is also observed that all cases except for the first station are self-similar. By attention to self-similarity profiles of mean velocity, it is observed for all the cases at the each station curves tend to zero at a same point.

Numerical Study on CO2 Pollution in an Ignition Chamber by Oxygen Enrichment

In this study, a 3D combustion chamber was simulated using FLUENT 6.32. Aims to obtain accurate information about the profile of the combustion in the furnace and also check the effect of oxygen enrichment on the combustion process. Oxygen enrichment is an effective way to reduce combustion pollutant. The flow rate of air to fuel ratio is varied as 1.3, 3.2 and 5.1 and the oxygen enriched flow rates are 28, 54 and 68 lit/min. Combustion simulations typically involve the solution of the turbulent flows with heat transfer, species transport and chemical reactions. It is common to use the Reynolds-averaged form of the governing equation in conjunction with a suitable turbulence model. The 3D Reynolds Averaged Navier Stokes (RANS) equations with standard k-ε turbulence model are solved together by Fluent 6.3 software. First order upwind scheme is used to model governing equations and the SIMPLE algorithm is used as pressure velocity coupling. Species mass fractions at the wall are assumed to have zero normal gradients.Results show that minimum mole fraction of CO2 happens when the flow rate ratio of air to fuel is 5.1. Additionally, in a fixed oxygen enrichment condition, increasing the air to fuel ratio will increase the temperature peak. As a result, oxygen-enrichment can reduce the CO2 emission at this kind of furnace in high air to fuel rates.

Design of the Propelling Nozzles for the Launchers and Satellites

The aim of this work is to determine the supersonic nozzle profiles used in propulsion, for the launchers or embarked with the satellites. This design has as a role firstly, to give a important propulsion, i.e. with uniform and parallel flow at exit, secondly to find a short length profiles without modification of the flow in the nozzle. The first elaborate program is used to determine the profile of divergent by using the characteristics method for an axisymmetric flow. The second program is conceived by using the finite volume method to determine and test the profile found connected to a convergent.

Comparison of Two Airfoil Sections for Application in Straight-Bladed Darrieus VAWT

This paper presents a model for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed Darrieus-type vertical axis wind turbine depending on blade geometrical section. It consists of an analytical code coupled to a solid modeling software, capable of generating the desired blade geometry based on the desired blade design geometric parameters. Such module is then linked to a finite volume commercial CFD code for the calculation of rotor performance by integration of the aerodynamic forces along the perimeter of each blade for a full period of revolution.After describing and validating the computational model with experimental data, the results of numerical simulations are proposed on the bases of two candidate airfoil sections, that is a classical symmetrical NACA 0021 blade profile and the recently developed DU 06-W-200 non-symmetric and laminar blade profile.Through a full CFD campaign of analysis, the effects of blade geometrical section on angle of attack are first investigated and then the overall rotor torque and power are analyzed as a function of blade azimuthal position, achieving a numerical quantification of the influence of airfoil geometry on overall rotor performance.

Distortion of Flow Measurement and Cavitation Occurs Due to Orifice Inlet Velocity Profiles

This analysis investigates the distortion of flow measurement and the increase of cavitation along orifice flowmeter. The analysis using the numerical method (CFD) validated the distortion of flow measurement through the inlet velocity profile considering the convergence and grid dependency. Realizable k-e model was selected and y+ was about 50 in this numerical analysis. This analysis also estimated the vulnerability of cavitation effect due to inlet velocity profile. The investigation concludes that inclined inlet velocity profile could vary the pressure which was measured at pressure tab near pipe wall and it led to distort the pressure values ranged from -3.8% to 5.3% near the orifice plate and to make the increase of cavitation. The investigation recommends that the fully developed inlet velocity flow is beneficial to accurate flow measurement in orifice flowmeter.

Influence of Dilution and Lean-premixed on Mild Combustion in an Industrial Burner

Understanding of how and where NOx formation occurs in industrial burner is very important for efficient and clean operation of utility burners. Also the importance of this problem is mainly due to its relation to the pollutants produced by more burners used widely of gas turbine in thermal power plants and glass and steel industry. In this article, a numerical model of an industrial burner operating in MILD combustion is validated with experimental data.. Then influence of air flow rate and air temperature on combustor temperature profiles and NOX product are investigated. In order to modification this study reports on the effects of fuel and air dilution (with inert gases H2O, CO2, N2), and also influence of lean-premixed of fuel, on the temperature profiles and NOX emission. Conservation equations of mass, momentum and energy, and transport equations of species concentrations, turbulence, combustion and radiation modeling in addition to NO modeling equations were solved together to present temperature and NO distribution inside the burner. The results shows that dilution, cause to a reduction in value of temperature and NOX emission, and suppresses any flame propagation inside the furnace and made the flame inside the furnace invisible. Dilution with H2O rather than N2 and CO2 decreases further the value of the NOX. Also with raise of lean-premix level, local temperature of burner and the value of NOX product are decreases because of premixing prevents local “hot spots" within the combustor volume that can lead to significant NOx formation. Also leanpremixing of fuel with air cause to amount of air in reaction zone is reach more than amount that supplied as is actually needed to burn the fuel and this act lead to limiting NOx formation

A Perspective Study of Asthma and its Control in Assam (India)

The main objective of our study is to collect data about the profile of the asthmatic patients in Assam and thereby have a comprehensive knowledge of the factors influencing the asthmatic patients of the state and their medication pattern. We developed a search strategy to find any publication about the community based survey asthma related and used. These to search the MEDLINE (1996 to current literature) CINAHL DOAJ pubmed databases using the key phrases, Asthma, Respiratory disorders, Drug therapy of Asthma, database decision support system and asthma. The appropriate literature was printed out from the online source and library (Journal) source. The study was conducted through a set of structured and non-structured questionnaires targeted on the asthmatic patients belonging to the rural and urban areas of Assam, during the month of Dec 2006 to July 2007, 138 cases were studied in Gauwathi Medical College & Hospital located in Bhangagarh, Assam in India. The demographic characteristics a factor in 138 patients with asthma with allergic rhinitis (cases) gives the detail profile of asthmatic patient-s distribution of Assam as classified on the basis of age and sex. It is evident from the study that male populations (66%) are more prone to asthma as compared to the females (34%).Another striking features that emerged from this survey is the maximum prevalence of asthma in the age group of 20- 30 years followed by infants belonging to the age group of 7 (0.05%) 0-10years among both male and female populations of Assam. The high incidence of asthma in the age group of 20-30 years may probably be due to the allergy arising out of sudden exposure to dust and pollen which the children face while playing and going to the school. The rural females in the age group of 30-40 years are more prone to asthma than urban females in the same age group may be due to sex differentiation among the tribal population of the state. Pharmacists should educate the asthmatics how to use inhalers considering growing menace of asthma in the state. Safer drugs should be produced in the form of aerosol so that easy administration by the asthmatic patients and physicians of the state is possible for curing asthma. The health centers should be more equipped with the medicines to cure asthma in the state like Assam.

Experimental Investigation on Solid Concentration in Gas-Solid Circulating Fluidized Bed for Methanol-to-Olefins Process

Methanol-to-olefins coupled with transformation of coal or natural gas to methanol gives an interesting and promising way to produce ethylene and propylene. To investigate solid concentration in gas-solid fluidized bed for methanol-to-olefins process catalyzed by SAPO-34, a cold model experiment system is established in this paper. The system comprises a gas distributor in a 300mm internal diameter and 5000mm height acrylic column, the fiber optic probe system and series of cyclones. The experiments are carried out at ambient conditions and under different superficial gas velocity ranging from 0.3930m/s to 0.7860m/s and different initial bed height ranging from 600mm to 1200mm. The effects of radial distance, axial distance, superficial gas velocity, initial bed height on solid concentration in the bed are discussed. The effects of distributor shape and porosity on solid concentration are also discussed. The time-averaged solid concentration profiles under different conditions are obtained.

Nodal Load Profiles Estimation for Time Series Load Flow Using Independent Component Analysis

This paper presents a method to estimate load profile in a multiple power flow solutions for every minutes in 24 hours per day. A method to calculate multiple solutions of non linear profile is introduced. The Power System Simulation/Engineering (PSS®E) and python has been used to solve the load power flow. The result of this power flow solutions has been used to estimate the load profiles for each load at buses using Independent Component Analysis (ICA) without any knowledge of parameter and network topology of the systems. The proposed algorithm is tested with IEEE 69 test bus system represents for distribution part and the method of ICA has been programmed in MATLAB R2012b version. Simulation results and errors of estimations are discussed in this paper.

Simulation Study of Radial Heat and Mass Transfer Inside a Fixed Bed Catalytic Reactor

A rigorous two-dimensional model is developed for simulating the operation of a less-investigated type steam reformer having a considerably lower operating Reynolds number, higher tube diameter, and non-availability of extra steam in the feed compared with conventional steam reformers. Simulation results show that reasonable predictions can only be achieved when certain correlations for wall to fluid heat transfer equations are applied. Due to severe operating conditions, in all cases, strong radial temperature gradients inside the reformer tubes have been found. Furthermore, the results show how a certain catalyst loading profile will affect the operation of the reformer.

Influence of Watertable Depth on Soil Sodicity and Salinity

In order to monitor the water table depth on soil profile salinity buildup, a field study was carried out during 2006-07. Wheat (Rabi) and Sorghum (Kharif) fodder were sown in with three treatments. The results showed that watertable depth lowered from 1.15m to 2.89 m depth at the end of experiment. With lower of watertable depth, pH, ECe and SAR decreased under crops both without and with gypsum and increased in fallowing. Soil moisture depletion was directly proportional to lowering of watertable. With the application of irrigation water (58cm) pH, ECe and SAR were reduced in cropped plots, reduction was higher in gypsum applied plots than non-gypsum plots. In case of fallowing, there was increase in pH, EC, while slight reduction occurred in SAR values. However, soil salinity showed an increasing upward trend under fallowing and its value in 0-30 cm soil layer was the highest amongst the treatments.

Ginzburg-Landau Model : an Amplitude Evolution Equation for Shallow Wake Flows

Linear and weakly nonlinear analysis of shallow wake flows is presented in the present paper. The evolution of the most unstable linear mode is described by the complex Ginzburg-Landau equation (CGLE). The coefficients of the CGLE are calculated numerically from the solution of the corresponding linear stability problem for a one-parametric family of shallow wake flows. It is shown that the coefficients of the CGLE are not so sensitive to the variation of the base flow profile.

Developing Pedotransfer Functions for Estimating Some Soil Properties using Artificial Neural Network and Multivariate Regression Approaches

Study of soil properties like field capacity (F.C.) and permanent wilting point (P.W.P.) play important roles in study of soil moisture retention curve. Although these parameters can be measured directly, their measurement is difficult and expensive. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. In this investigation, 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. The data set was divided into two subsets for calibration (80%) and testing (20%) of the models and their normality were tested by Kolmogorov-Smirnov method. Both multivariate regression and artificial neural network (ANN) techniques were employed to develop the appropriate PTFs for predicting soil parameters using easily measurable characteristics of clay, silt, O.C, S.P, B.D and CaCO3. The performance of the multivariate regression and ANN models was evaluated using an independent test data set. In order to evaluate the models, root mean square error (RMSE) and R2 were used. The comparison of RSME for two mentioned models showed that the ANN model gives better estimates of F.C and P.W.P than the multivariate regression model. The value of RMSE and R2 derived by ANN model for F.C and P.W.P were (2.35, 0.77) and (2.83, 0.72), respectively. The corresponding values for multivariate regression model were (4.46, 0.68) and (5.21, 0.64), respectively. Results showed that ANN with five neurons in hidden layer had better performance in predicting soil properties than multivariate regression.

Effect of Curing Profile to Eliminate the Voids / Black Dots Formation in Underfill Epoxy for Hi-CTE Flip Chip Packaging

Void formation in underfill is considered as failure in flip chip manufacturing process. Void formation possibly caused by several factors such as poor soldering and flux residue during die attach process, void entrapment due moisture contamination, dispense pattern process and setting up the curing process. This paper presents the comparison of single step and two steps curing profile towards the void and black dots formation in underfill for Hi-CTE Flip Chip Ceramic Ball Grid Array Package (FC-CBGA). Statistic analysis was conducted to analyze how different factors such as wafer lot, sawing technique, underfill fillet height and curing profile recipe were affected the formation of voids and black dots. A C-Mode Scanning Aqoustic Microscopy (C-SAM) was used to scan the total count of voids and black dots. It was shown that the 2 steps curing profile provided solution for void elimination and black dots in underfill after curing process.

Personalization and the Universal Communications Identifier Concept

As communications systems and technology become more advanced and complex, it will be increasingly important to focus on users- individual needs. Personalization and effective user profile management will be necessary to ensure the uptake and success of new services and devices and it is therefore important to focus on the users- requirements in this area and define solutions that meet these requirements. The work on personalization and user profiles emerged from earlier ETSI work on a Universal Communications Identifier (UCI) which is a unique identifier of the user rather than a range of identifiers of the many of communication devices or services (e.g. numbers of fixed phone at home/work, mobile phones, fax and email addresses). This paper describes work on personalization including standardized information and preferences and an architectural framework providing a description of how personalization can be integrated in Next Generation Networks, together with the UCI concept.

Application of Micro-continuum Approach in the Estimation of Snow Drift Density, Velocity and Mass Transport in Hilly Bound Cold Regions

We estimate snow velocity and snow drift density on hilly terrain under the assumption that the drifting snow mass can be represented using a micro-continuum approach (i.e. using a nonclassical mechanics approach assuming a class of fluids for which basic equations of mass, momentum and energy have been derived). In our model, the theory of coupled stress fluids proposed by Stokes [1] has been employed for the computation of flow parameters. Analyses of bulk drift velocity, drift density, drift transport and mass transport of snow particles have been carried out and computations made, considering various parametric effects. Results are compared with those of classical mechanics (logarithmic wind profile). The results indicate that particle size affects the flow characteristics significantly.

Production of WGHs and AFPHs using Protease Combinations at High and Ambient Pressure

Wheat gluten hydrolyzates (WGHs) and anchovy fine powder hydrolyzates (AFPHs) were produced at 300 MPa using combinations of Flavourzyme 500MG (F), Alcalase 2.4L (A), Marugoto E (M) and Protamex (P), and then were compared to those produced at ambient pressure concerning the contents of soluble solid (SS), soluble nitrogen and electrophoretic profiles. The contents of SS in the WGHs and AFPHs increased up to 87.2% according to the increase in enzyme number both at high and ambient pressure. Based on SS content, the optimum enzyme combinations for one-, two-, three- and four-enzyme hydrolysis were determined as F, FA, FAM and FAMP, respectively. Similar trends were found for the contents of total soluble nitrogen (TSN) and TCA-soluble nitrogen (TCASN). The contents of SS, TSN and TCASN in the hydrolyzates together with electrophoretic mobility maps indicates that the high-pressure treatment of this study accelerated protein hydrolysis compared to ambient-pressure treatment.

Research on the Survivability of Embedded Real-time System

Introducing survivability into embedded real-time system (ERTS) can improve the survivability power of the system. This paper mainly discusses about the survivability of ERTS. The first is the survivability origin of ERTS. The second is survivability analysis. According to the definition of survivability based on survivability specification and division of the entire survivability analysis process for ERTS, a survivability analysis profile is presented. The quantitative analysis model of this profile is emphasized and illuminated in detail, the quantifying analysis of system was showed helpful to evaluate system survivability more accurate. The third is platform design of survivability analysis. In terms of the profile, the analysis process is encapsulated and assembled into one platform, on which quantification, standardization and simplification of survivability analysis are all achieved. The fourth is survivability design. According to character of ERTS, strengthened design method is selected to realize system survivability design. Through the analysis of embedded mobile video-on-demand system, intrusion tolerant technology is introduced in whole survivability design.

Microneedles-Mediated Transdermal Delivery

The objective of the present study was to evaluate the potential of hollow microneedles for enhancing the transdermal delivery of Bovine Serum Albumin (MW~66,000 Da)-Fluorescein Isothiocyanate (BSA-FITC) conjugate, a hydrophilic large molecular compound. Moreover, the effect of different formulations was evaluated. The series of binary mixtures composed of propylene glycol (PG) and pH 7.4 phosphate buffer solution (PBS) was prepared and used as a medium for BSA-FITC. The results showed that there was no permeation of BSA-FITC solution across the neonatal porcine skin without using hollow microneedles, whereas the cumulative amount of BSA-FITC released at 8 h through the neonatal porcine skin was about 60-70% when using hollow microneedles. Furthermore, the results demonstrated that the higher volume of PG in binary mixtures injected, the lower cumulative amount of BSA-FITC released and release rate of BSA-FITC from skin. These release profiles of BSA-FITC in binary mixtures were expressed by Fick-s law of diffusion. These results suggest the utilization of hollow microneedle to enhance transdermal delivery of protein and provide useful information for designing an effective hollow microneedle system.