Performance of a Connected Random Covered Energy Efficient Wireless Sensor Network

For the sensor network to operate successfully, the active nodes should maintain both sensing coverage and network connectivity. Furthermore, scheduling sleep intervals plays critical role for energy efficiency of wireless sensor networks. Traditional methods for sensor scheduling use either sensing coverage or network connectivity, but rarely both. In this paper, we use random scheduling for sensing coverage and then turn on extra sensor nodes, if necessary, for network connectivity. Simulation results have demonstrated that the number of extra nodes that is on with upper bound of around 9%, is small compared to the total number of deployed sensor nodes. Thus energy consumption for switching on extra sensor node is small.

Active Intra-ONU Scheduling with Cooperative Prediction Mechanism in EPONs

Dynamic bandwidth allocation in EPONs can be generally separated into inter-ONU scheduling and intra-ONU scheduling. In our previous work, the active intra-ONU scheduling (AS) utilizes multiple queue reports (QRs) in each report message to cooperate with the inter-ONU scheduling and makes the granted bandwidth fully utilized without leaving unused slot remainder (USR). This scheme successfully solves the USR problem originating from the inseparability of Ethernet frame. However, without proper setting of threshold value in AS, the number of QRs constrained by the IEEE 802.3ah standard is not enough, especially in the unbalanced traffic environment. This limitation may be solved by enlarging the threshold value. The large threshold implies the large gap between the adjacent QRs, thus resulting in the large difference between the best granted bandwidth and the real granted bandwidth. In this paper, we integrate AS with a cooperative prediction mechanism and distribute multiple QRs to reduce the penalty brought by the prediction error. Furthermore, to improve the QoS and save the usage of queue reports, the highest priority (EF) traffic which comes during the waiting time is granted automatically by OLT and is not considered in the requested bandwidth of ONU. The simulation results show that the proposed scheme has better performance metrics in terms of bandwidth utilization and average delay for different classes of packets.

AHP and Extent Fuzzy AHP Approach for Prioritization of Performance Measurement Attributes

The decision to recruit manpower in an organization requires clear identification of the criteria (attributes) that distinguish successful from unsuccessful performance. The choice of appropriate attributes or criteria in different levels of hierarchy in an organization is a multi-criteria decision problem and therefore multi-criteria decision making (MCDM) techniques can be used for prioritization of such attributes. Analytic Hierarchy Process (AHP) is one such technique that is widely used for deciding among the complex criteria structure in different levels. In real applications, conventional AHP still cannot reflect the human thinking style as precise data concerning human attributes are quite hard to be extracted. Fuzzy logic offers a systematic base in dealing with situations, which are ambiguous or not well defined. This study aims at defining a methodology to improve the quality of prioritization of an employee-s performance measurement attributes under fuzziness. To do so, a methodology based on the Extent Fuzzy Analytic Hierarchy Process is proposed. Within the model, four main attributes such as Subject knowledge and achievements, Research aptitude, Personal qualities and strengths and Management skills with their subattributes are defined. The two approaches conventional AHP approach and the Extent Fuzzy Analytic Hierarchy Process approach have been compared on the same hierarchy structure and criteria set.

CAPWAP Status and Design Considerations for Seamless Roaming Support

Wireless LAN technologies have picked up momentum in the recent years due to their ease of deployment, cost and availability. The era of wireless LAN has also given rise to unique applications like VOIP, IPTV and unified messaging. However, these real-time applications are very sensitive to network and handoff latencies. To successfully support these applications, seamless roaming during the movement of mobile station has become crucial. Nowadays, centralized architecture models support roaming in WLANs. They have the ability to manage, control and troubleshoot large scale WLAN deployments. This model is managed by Control and Provision of Wireless Access Point protocol (CAPWAP). This paper covers the CAPWAP architectural solution along with its proposals that have emerged. Based on the literature survey conducted in this paper, we found that the proposed algorithms to reduce roaming latency in CAPWAP architecture do not support seamless roaming. Additionally, they are not sufficient during the initial period of the network. This paper also suggests important design consideration for mobility support in future centralized IEEE 802.11 networks.

Ethanol Production from Sugarcane Bagasse by Means of Enzymes Produced by Solid State Fermentation Method

Nowadays there is a growing interest in biofuel production in most countries because of the increasing concerns about hydrocarbon fuel shortage and global climate changes, also for enhancing agricultural economy and producing local needs for transportation fuel. Ethanol can be produced from biomass by the hydrolysis and sugar fermentation processes. In this study ethanol was produced without using expensive commercial enzymes from sugarcane bagasse. Alkali pretreatment was used to prepare biomass before enzymatic hydrolysis. The comparison between NaOH, KOH and Ca(OH)2 shows NaOH is more effective on bagasse. The required enzymes for biomass hydrolysis were produced from sugarcane solid state fermentation via two fungi: Trichoderma longibrachiatum and Aspergillus niger. The results show that the produced enzyme solution via A. niger has functioned better than T. longibrachiatum. Ethanol was produced by simultaneous saccharification and fermentation (SSF) with crude enzyme solution from T. longibrachiatum and Saccharomyces cerevisiae yeast. To evaluate this procedure, SSF of pretreated bagasse was also done using Celluclast 1.5L by Novozymes. The yield of ethanol production by commercial enzyme and produced enzyme solution via T. longibrachiatum was 81% and 50% respectively.

Reliable Face Alignment Using Two-Stage AAM

AAM (active appearance model) has been successfully applied to face and facial feature localization. However, its performance is sensitive to initial parameter values. In this paper, we propose a two-stage AAM for robust face alignment, which first fits an inner face-AAM model to the inner facial feature points of the face and then localizes the whole face and facial features by optimizing the whole face-AAM model parameters. Experiments show that the proposed face alignment method using two-stage AAM is more reliable to the background and the head pose than the standard AAM-based face alignment method.

The Impact of ERP Systems on Accounting Processes

Advances in information technology, recent changes in business environment, globalization, deregulation, privatization have made running a successful business more difficult than ever before. To remain successful and to be competitive have forced companies to react to the new changes in order to survive and succeed. The implementation of an Enterprise Resource planning (ERP) system improves information flow, reduce costs, establish linkage with suppliers and reduce response time to customer needs. This paper focuses on a sample of Greek companies, investigates the ERP market in Greece, the reasons why the Greek companies are investing in ERP systems, the benefits that users have achieved and the influence of ERP systems on the use of new accounting practices. The results indicate a greater level on information integration, flexibility in information access and greater functionality provided by ERP systems but little influence on the use of new accounting practices.

Mathematical Modeling of Non-Isothermal Multi-Component Fluid Flow in Pipes Applying to Rapid Gas Decompression in Rich and Base Gases

The paper presents a one-dimensional transient mathematical model of compressible non-isothermal multicomponent fluid mixture flow in a pipe. The set of the mass, momentum and enthalpy conservation equations for gas phase is solved in the model. Thermo-physical properties of multi-component gas mixture are calculated by solving the Equation of State (EOS) model. The Soave-Redlich-Kwong (SRK-EOS) model is chosen. Gas mixture viscosity is calculated on the basis of the Lee-Gonzales- Eakin (LGE) correlation. Numerical analysis of rapid gas decompression process in rich and base natural gases is made on the basis of the proposed mathematical model. The model is successfully validated on the experimental data [1]. The proposed mathematical model shows a very good agreement with the experimental data [1] in a wide range of pressure values and predicts the decompression in rich and base gas mixtures much better than analytical and mathematical models, which are available from the open source literature.

Neural Network Based Icing Identification and Fault Tolerant Control of a 340 Aircraft

This paper presents a Neural Network (NN) identification of icing parameters in an A340 aircraft and a reconfiguration technique to keep the A/C performance close to the performance prior to icing. Five aircraft parameters are assumed to be considerably affected by icing. The off-line training for identifying the clear and iced dynamics is based on the Levenberg-Marquard Backpropagation algorithm. The icing parameters are located in the system matrix. The physical locations of the icing are assumed at the right and left wings. The reconfiguration is based on the technique known as the control mixer approach or pseudo inverse technique. This technique generates the new control input vector such that the A/C dynamics is not much affected by icing. In the simulations, the longitudinal and lateral dynamics of an Airbus A340 aircraft model are considered, and the stability derivatives affected by icing are identified. The simulation results show the successful NN identification of the icing parameters and the reconfigured flight dynamics having the similar performance before the icing. In other words, the destabilizing icing affect is compensated.

From Hype to Ignorance – A Review of 30 Years of Lean Production

Lean production (or lean management respectively) gained popularity in several waves. The last three decades have been filled with numerous attempts to apply these concepts in companies. However, this has only been partially successful. The roots of lean production can be traced back to Toyota-s just-in-time production. This concept, which according to Womack-s, Jones- and Roos- research at MIT was employed by Japanese car manufacturers, became popular under its international names “lean production", “lean-manufacturing" and was termed “Schlanke Produktion" in Germany. This contribution shows a review about lean production in Germany over the last thirty years: development, trial & error and implementation as well.

Evolutionary Approach for Automated Discovery of Censored Production Rules

In the recent past, there has been an increasing interest in applying evolutionary methods to Knowledge Discovery in Databases (KDD) and a number of successful applications of Genetic Algorithms (GA) and Genetic Programming (GP) to KDD have been demonstrated. The most predominant representation of the discovered knowledge is the standard Production Rules (PRs) in the form If P Then D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski & Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: If P Then D Unless C, where C (Censor) is an exception to the rule. Such rules are employed in situations, in which the conditional statement 'If P Then D' holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the 'If P Then D' part of the CPR expresses important information, while the Unless C part acts only as a switch and changes the polarity of D to ~D. This paper presents a classification algorithm based on evolutionary approach that discovers comprehensible rules with exceptions in the form of CPRs. The proposed approach has flexible chromosome encoding, where each chromosome corresponds to a CPR. Appropriate genetic operators are suggested and a fitness function is proposed that incorporates the basic constraints on CPRs. Experimental results are presented to demonstrate the performance of the proposed algorithm.

Multi-Agent Simulation of Wayfinding for Rescue Operation during Building Fire

Recently research on human wayfinding has focused mainly on mental representations rather than processes of wayfinding. The objective of this paper is to demonstrate the rationality behind applying multi-agent simulation paradigm to the modeling of rescuer team wayfinding in order to develop computational theory of perceptual wayfinding in crisis situations using image schemata and affordances, which explains how people find a specific destination in an unfamiliar building such as a hospital. The hypothesis of this paper is that successful navigation is possible if the agents are able to make the correct decision through well-defined cues in critical cases, so the design of the building signage is evaluated through the multi-agent-based simulation. In addition, a special case of wayfinding in a building, finding one-s way through three hospitals, is used to demonstrate the model. Thereby, total rescue time for rescue operation during building fire is computed. This paper discuses the computed rescue time for various signage localization and provides experimental result for optimization of building signage design. Therefore the most appropriate signage design resulted in the shortest total rescue time in various situations.

Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis

This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.

A Rough-set Based Approach to Design an Expert System for Personnel Selection

Effective employee selection is a critical component of a successful organization. Many important criteria for personnel selection such as decision-making ability, adaptability, ambition, and self-organization are naturally vague and imprecise to evaluate. The rough sets theory (RST) as a new mathematical approach to vagueness and uncertainty is a very well suited tool to deal with qualitative data and various decision problems. This paper provides conceptual, descriptive, and simulation results, concentrating chiefly on human resources and personnel selection factors. The current research derives certain decision rules which are able to facilitate personnel selection and identifies several significant features based on an empirical study conducted in an IT company in Iran.

Project Management in Student Satellite Projects: A University – Industry Collaboration View

This research contribution propels the idea of collaborating environment for the execution of student satellite projects in the backdrop of project management principles. The recent past has witnessed a technological shift in the aerospace industry from the big satellite projects to the small spacecrafts especially for the earth observation and communication purposes. This vibrant shift has vitalized the academia and industry to share their resources and to create a win-win paradigm of mutual success and technological development along with the human resource development in the field of aerospace. Small student satellites are the latest jargon of academia and more than 100 CUBESAT projects have been executed successfully all over the globe and many new student satellite projects are in the development phase. The small satellite project management requires the application of specific knowledge, skills, tools and techniques to achieve the defined mission requirements. The Authors have presented the detailed outline for the project management of student satellites and presented the role of industry to collaborate with the academia to get the optimized results in academic environment.

Comparative Study of Ant Colony and Genetic Algorithms for VLSI Circuit Partitioning

This paper presents a comparative study of Ant Colony and Genetic Algorithms for VLSI circuit bi-partitioning. Ant colony optimization is an optimization method based on behaviour of social insects [27] whereas Genetic algorithm is an evolutionary optimization technique based on Darwinian Theory of natural evolution and its concept of survival of the fittest [19]. Both the methods are stochastic in nature and have been successfully applied to solve many Non Polynomial hard problems. Results obtained show that Genetic algorithms out perform Ant Colony optimization technique when tested on the VLSI circuit bi-partitioning problem.

Finite Element Solution of Navier-Stokes Equations for Steam Flow and Heat Transfer

Computational simulation of steam flow and heat transfer in power plant condensers on the basis of the threedimensional mathematical model for the flow through porous media is presented. In order to solve the mathematical model of steam flow and heat transfer in power plant condensers, the Streamline Upwind Petrov-Galerkin finite element method is applied. By comparison of the results of simulation with experimental results about an experimental condenser, it is confirmed that SUPG finite element method can be successfully applied for solving the three-dimensional mathematical model of steam flow and heat transfer in power plant condensers.

Fabrication of Single Crystal of Mg Alloys Containing Rare Earth Elements

Single crystals of Magnesium alloys such as Mg-1Al, Mg-1Zn-0.5Y, Mg-3Li, and AZ31 alloys were successfully fabricated in this study by employing the modified Bridgman method. Single crystals of pure Mg were also made in this study. To determine the exact orientation of crystals, Laue back-reflection method and pole figure measurement were carried out on each single crystal. Dimensions of single crystals were 10 mm in diameter and 120 mm in length. Hardness and compression tests were conducted and the results revealed that hardness and the strength strongly depended on the orientation. The closer to basal one the orientation was, the higher hardness and compressive strength were. The effect of alloying was not higher than that of orientation. After compressive deformation of single crystals, the orientation of the crystals was found to rotate and to be parallel to the basal orientation.

Liquid-Liquid Equilibrium for the Binary Mixtures of α-Pinene + Water and α-Terpineol + Water

α-Pinene is the main component of the most turpentine oils. The hydration of α-pinene with acid catalysts leads to a complex mixture of monoterpenes. In order to obtain more valuable products, the α-pinene in the turpentine can be hydrated in dilute mineral acid solutions to produce α-terpineol. The design of separation processes requires information on phase equilibrium and related thermodynamic properties. This paper reports the results of study on liquid-liquid equilibrium (LLE) of system containing α- pinene + water and α-terpineol + water. Binary LLE for α-pinene + water system, and α-terpineol + water systems were determined by experiment at 301K and atmospheric pressure. The two component mixture was stirred for about 30min, then the mixture was left for about 2h for complete phase separation. The composition of both phases was analyzed by using a Gas Chromatograph. The experimental data were correlated by considering both NRTL and UNIQUAC activity coefficient models. The LLE data for the system of α-pinene + water and α-terpineol + water were correlated successfully by the NRTL model. The experimental data were not satisfactorily fitted by the UNIQUAC model. The NRTL model (α =0.3) correlates the LLE data for the system of α-pinene + water at 301K with RMSD of 0.0404%. And the NRTL model (α =0.61) at 301K with RMSD of 0.0058 %. The NRTL model (α =0.3) correlates the LLE data for the system of α- terpineol + water at 301K with RMSD of 0.1487% and the NRTL model (α =0.6) at 301K with RMSD of 0.0032%, between the experimental and calculated mole fractions.

Establishing of Education Strategy in New Technological Environments with using Student Feedback

According to the new developments in the field of information and communication technologies, the necessity arises for active use of these new technologies in education. It is clear that the integration of technology in education system will be different for primary-higher education or traditional- distance education. In this study, the subject of the integration of technology for distance education was discussed. The subject was taken from the viewpoint of students. With using the information of student feedback about education program in which new technological medias are used, how can survey variables can be separated into the factors as positive, negative and supporter and how can be redesigned education strategy of the higher education associations with the examining the variables of each determinated factor is explained. The paper concludes with the recommendations about the necessitity of working as a group of different area experts and using of numerical methods in establishing of education strategy to be successful.