Time-Domain Stator Current Condition Monitoring: Analyzing Point Failures Detection by Kolmogorov-Smirnov (K-S) Test

This paper deals with condition monitoring of electric switch machine for railway points. Point machine, as a complex electro-mechanical device, switch the track between two alternative routes. There has been an increasing interest in railway safety and the optimal management of railway equipments maintenance, e.g. point machine, in order to enhance railway service quality and reduce system failure. This paper explores the development of Kolmogorov- Smirnov (K-S) test to detect some point failures (external to the machine, slide chairs, fixing, stretchers, etc), while the point machine (inside the machine) is in its proper condition. Time-domain stator Current signatures of normal (healthy) and faulty points are taken by 3 Hall Effect sensors and are analyzed by K-S test. The test is simulated by creating three types of such failures, namely putting a hard stone and a soft stone between stock rail and switch blades as obstacles and also slide chairs- friction. The test has been applied for those three faults which the results show that K-S test can effectively be developed for the aim of other point failures detection, which their current signatures deviate parametrically from the healthy current signature. K-S test as an analysis technique, assuming that any defect has a specific probability distribution. Empirical cumulative distribution functions (ECDF) are used to differentiate these probability distributions. This test works based on the null hypothesis that ECDF of target distribution is statistically similar to ECDF of reference distribution. Therefore by comparing a given current signature (as target signal) from unknown switch state to a number of template signatures (as reference signal) from known switch states, it is possible to identify which is the most likely state of the point machine under analysis.

Control of A Cart-Ball System Using State-Feedback Controller

A cart-ball system is a challenging system from the control engineering point of view. This is due to the nonlinearities, multivariable, and non-minimum phase behavior present in this system. This paper is concerned with the problem of modeling and control of such system. The objective of control strategy is to place the cart at a desired position while balancing the ball on the top of the arc-shaped track fixed on the cart. A State-Feedback Controller (SFC) with a pole-placement method will be designed in order to control the system. At first, the mathematical model of a cart-ball system in the state-space form is developed. Then, the linearization of a model will be established in order to design a SFC. The integral control strategy will be performed as to control the cart position of a system. Simulation work is then performed using MATLAB/SIMULINK software in order to study the performance of SFC when applied to the system.

Technology Integrated Education – Shaping the Personality and Social Development of the Young

There has been a strong link between computermediated education and constructivism learning and teaching theory.. Acknowledging how well the constructivism doctrine would work online, it has been established that constructivist views of learning would agreeably correlate with the philosophy of open and distance learning. Asynchronous and synchronous communications have placed online learning on the right track of a constructive learning path. This paper is written based on the social constructivist framework, where knowledge is constructed from social communication and interaction. The study explores the possibility of practicing this theory through incorporating online discussion in the syllabus and the ways it can be implemented to contribute to young people-s personality and social development by addressing some aspects that may contribute to the social problem such as prejudice, ignorance and intolerance.

3D Sensing and Mapping for a Tracked Mobile Robot with a Movable Laser Ranger Finder

This paper presents a sensing system for 3D sensing and mapping by a tracked mobile robot with an arm-type sensor movable unit and a laser range finder (LRF). The arm-type sensor movable unit is mounted on the robot and the LRF is installed at the end of the unit. This system enables the sensor to change position and orientation so that it avoids occlusions according to terrain by this mechanism. This sensing system is also able to change the height of the LRF by keeping its orientation flat for efficient sensing. In this kind of mapping, it may be difficult for moving robot to apply mapping algorithms such as the iterative closest point (ICP) because sets of the 2D data at each sensor height may be distant in a common surface. In order for this kind of mapping, the authors therefore applied interpolation to generate plausible model data for ICP. The results of several experiments provided validity of these kinds of sensing and mapping in this sensing system.

A Study of Visual Attention in Diagnosing Cerebellar Tumours

Visual attention allows user to select the most relevant information to ongoing behaviour. This paper presents a study on; i) the performance of people measurements, ii) accurateness of people measurement of the peaks that correspond to chemical quantities from the Magnetic Resonance Spectroscopy (MRS) graphs and iii) affects of people measurements to the algorithm-based diagnosis. Participant-s eye-movement was recorded using eye-tracker tool (Eyelink II). This experiment involves three participants for examining 20 MRS graphs to estimate the peaks of chemical quantities which indicate the abnormalities associated with Cerebellar Tumours (CT). The status of each MRS is verified by using decision algorithm. Analysis involves determination of humans-s eye movement pattern in measuring the peak of spectrograms, scan path and determining the relationship of distributions of fixation durations with the accuracy of measurement. In particular, the eye-tracking data revealed which aspects of the spectrogram received more visual attention and in what order they were viewed. This preliminary investigation provides a proof of concept for use of the eye tracking technology as the basis for expanded CT diagnosis.

Trajectory Control of a Robotic Manipulator Utilizing an Adaptive Fuzzy Sliding Mode

In this paper, a novel adaptive fuzzy sliding mode control method is proposed for the robust tracking control of robotic manipulators. The proposed controller possesses the advantages of adaptive control, fuzzy control, and sliding mode control. First, system stability and robustness are guaranteed based on the sliding mode control. Further, fuzzy rules are developed incorporating with adaptation law to alleviate the input chattering effectively. Stability of the control system is proven by using the Lyapunov method. An application to a three-degree-of-freedom robotic manipulator is carried out. Accurate trajectory tracking as well as robustness is achieved. Input chattering is greatly eliminated.

Design of a Hybrid Fuel Cell with Battery Energy Storage for Stand-Alone Distributed Generation Applications

This paper presents the modeling and simulation of a hybrid proton exchange membrane fuel cell (PEMFC) with an energy storage system for use in a stand-alone distributed generation (DG) system. The simulation model consists of fuel cell DG, lead-acid battery, maximum power point tracking and power conditioning unit which is modeled in the MATLAB/Simulink platform. Poor loadfollowing characteristics and slow response to rapid load changes are some of the weaknesses of PEMFC because of the gas processing reaction and the fuel cell dynamics. To address the load-tracking issues in PEMFC, a hybrid PEMFC and battery storage system is considered and modelled. The model utilizes PEMFC as the main energy source whereas the battery functions as energy storage to compensate for the limitations of PEMFC.Simulation results are given to show the overall system performance under light and heavyloading conditions.

MTSSM - A Framework for Multi-Track Segmentation of Symbolic Music

Music segmentation is a key issue in music information retrieval (MIR) as it provides an insight into the internal structure of a composition. Structural information about a composition can improve several tasks related to MIR such as searching and browsing large music collections, visualizing musical structure, lyric alignment, and music summarization. The authors of this paper present the MTSSM framework, a twolayer framework for the multi-track segmentation of symbolic music. The strength of this framework lies in the combination of existing methods for local track segmentation and the application of global structure information spanning via multiple tracks. The first layer of the MTSSM uses various string matching techniques to detect the best candidate segmentations for each track of a multi-track composition independently. The second layer combines all single track results and determines the best segmentation for each track in respect to the global structure of the composition.

Performance Analysis of a Flexible Manufacturing Line Operated Under Surplus-based Production Control

In this paper we present our results on the performance analysis of a multi-product manufacturing line. We study the influence of external perturbations, intermediate buffer content and the number of manufacturing stages on the production tracking error of each machine in the multi-product line operated under a surplusbased production control policy. Starting by the analysis of a single machine with multiple production stages (one for each product type), we provide bounds on the production error of each stage. Then, we extend our analysis to a line of multi-stage machines, where similarly, bounds on each production tracking error for each product type, as well as buffer content are obtained. Details on performance of the closed-loop flow line model are illustrated in numerical simulations.

Qmulus – A Cloud Driven GPS Based Tracking System for Real-Time Traffic Routing

This paper presents Qmulus- a Cloud Based GPS Model. Qmulus is designed to compute the best possible route which would lead the driver to the specified destination in the shortest time while taking into account real-time constraints. Intelligence incorporated to Qmulus-s design makes it capable of generating and assigning priorities to a list of optimal routes through customizable dynamic updates. The goal of this design is to minimize travel and cost overheads, maintain reliability and consistency, and implement scalability and flexibility. The model proposed focuses on reducing the bridge between a Client Application and a Cloud service so as to render seamless operations. Qmulus-s system model is closely integrated and its concept has the potential to be extended into several other integrated applications making it capable of adapting to different media and resources.

Evaluation of Mixed-Mode Stress Intensity Factor by Digital Image Correlation and Intelligent Hybrid Method

Displacement measurement was conducted on compact normal and shear specimens made of acrylic homogeneous material subjected to mixed-mode loading by digital image correlation. The intelligent hybrid method proposed by Nishioka et al. was applied to the stress-strain analysis near the crack tip. The accuracy of stress-intensity factor at the free surface was discussed from the viewpoint of both the experiment and 3-D finite element analysis. The surface images before and after deformation were taken by a CMOS camera, and we developed the system which enabled the real time stress analysis based on digital image correlation and inverse problem analysis. The great portion of processing time of this system was spent on displacement analysis. Then, we tried improvement in speed of this portion. In the case of cracked body, it is also possible to evaluate fracture mechanics parameters such as the J integral, the strain energy release rate, and the stress-intensity factor of mixed-mode. The 9-points elliptic paraboloid approximation could not analyze the displacement of submicron order with high accuracy. The analysis accuracy of displacement was improved considerably by introducing the Newton-Raphson method in consideration of deformation of a subset. The stress-intensity factor was evaluated with high accuracy of less than 1% of the error.

Use of RFID Technology for Identification, Traceability Monitoring and the Checking of Product Authenticity

This paper is an overview of the structure of Radio Frequency Identification (RFID) systems and radio frequency bands used by RFID technology. It also presents a solution based on the application of RFID for brand authentication, traceability and tracking, by implementing a production management system and extending its use to traders.

Optimal Switching Strategies for Tracking of Currents of Voltage Source Converters

This paper proposes a new optimal feedback controller for voltage source converters VSC's, for current regulated voltage source converters, which allows compensate the harmonics of current produced by nonlinear loads and load reactive power. The aim of the present paper is to describe a novel switching signal generation technique called optimal controller which guarantees that the injected currents follow the reference currents determined by the compensation strategy, with the smallest possible tracking error and fixed switching frequency. It is compared with well-known hysteresis current controller HCC. The validity of presented method and its comparison with HCC is studied through simulation results.

Structural Monitoring and Control During Support System Replacement of a Historical Gate

Middle-gate is located in Hasankeyf, Batman dating back to 1800 BC and is one of the important historical structures in Turkey. The ancient structure has suffered major structural cracks due to aging as well as lateral pressure of a cracked rock which is predicted to be about 100 tons. The existing support system was found to be inadequate to support the load especially after a recent rock fall in the close vicinity. Concerns were increased since the existing support system that is integral with a damaged and cracked gate wall needed to be replaced by a new support system. The replacement process must be carefully monitored by crackmeters and control mechanisms should be integrated to prevent cracks to expand while the same crack width needs to be maintained after the operation. The control system and actions taken during the intervention are explained in this paper.

A Vehicular Visual Tracking System Incorporating Global Positioning System

Surveillance system is widely used in the traffic monitoring. The deployment of cameras is moving toward a ubiquitous camera (UbiCam) environment. In our previous study, a novel service, called GPS-VT, was firstly proposed by incorporating global positioning system (GPS) and visual tracking techniques for the UbiCam environment. The first prototype is called GODTA (GPS-based Moving Object Detection and Tracking Approach). For a moving person carried GPS-enabled mobile device, he can be tracking when he enters the field-of-view (FOV) of a camera according to his real-time GPS coordinate. In this paper, GPS-VT service is applied to the tracking of vehicles. The moving speed of a vehicle is much faster than a person. It means that the time passing through the FOV is much shorter than that of a person. Besides, the update interval of GPS coordinate is once per second, it is asynchronous with the frame rate of the real-time image. The above asynchronous is worsen by the network transmission delay. These factors are the main challenging to fulfill GPS-VT service on a vehicle.In order to overcome the influence of the above factors, a back-propagation neural network (BPNN) is used to predict the possible lane before the vehicle enters the FOV of a camera. Then, a template matching technique is used for the visual tracking of a target vehicle. The experimental result shows that the target vehicle can be located and tracking successfully. The success location rate of the implemented prototype is higher than that of the previous GODTA.

Hybrid GA Tuned RBF Based Neuro-Fuzzy Controller for Robotic Manipulator

In this paper performance of Puma 560 manipulator is being compared for hybrid gradient descent and least square method learning based ANFIS controller with hybrid Genetic Algorithm and Generalized Pattern Search tuned radial basis function based Neuro-Fuzzy controller. ANFIS which is based on Takagi Sugeno type Fuzzy controller needs prior knowledge of rule base while in radial basis function based Neuro-Fuzzy rule base knowledge is not required. Hybrid Genetic Algorithm with generalized Pattern Search is used for tuning weights of radial basis function based Neuro- fuzzy controller. All the controllers are checked for butterfly trajectory tracking and results in the form of Cartesian and joint space errors are being compared. ANFIS based controller is showing better performance compared to Radial Basis Function based Neuro-Fuzzy Controller but rule base independency of RBF based Neuro-Fuzzy gives it an edge over ANFIS

Analysis of Surface Spalling on a First Intermediate Roll in Sendzirmir Mills

A first intermediate roll of Sendzirmir mills was failure by surface spalling during operation. After analyzing by visual, stereo microscope, optical microscope, scanning electron microscope, glow-discharged spectrometer and hardness test, respectively, the results show that some voids and cracks existed on the contact surface as well as subsurface. Further examination verified inadequate hardness and inclusions were responsible for the failure of surface spalling.

Planning Rigid Body Motions and Optimal Control Problem on Lie Group SO(2, 1)

In this paper smooth trajectories are computed in the Lie group SO(2, 1) as a motion planning problem by assigning a Frenet frame to the rigid body system to optimize the cost function of the elastic energy which is spent to track a timelike curve in Minkowski space. A method is proposed to solve a motion planning problem that minimizes the integral of the Lorentz inner product of Darboux vector of a timelike curve. This method uses the coordinate free Maximum Principle of Optimal control and results in the theory of integrable Hamiltonian systems. The presence of several conversed quantities inherent in these Hamiltonian systems aids in the explicit computation of the rigid body motions.

Face Reconstruction and Camera Pose Using Multi-dimensional Descent

This paper aims to propose a novel, robust, and simple method for obtaining a human 3D face model and camera pose (position and orientation) from a video sequence. Given a video sequence of a face recorded from an off-the-shelf digital camera, feature points used to define facial parts are tracked using the Active- Appearance Model (AAM). Then, the face-s 3D structure and camera pose of each video frame can be simultaneously calculated from the obtained point correspondences. This proposed method is primarily based on the combined approaches of Gradient Descent and Powell-s Multidimensional Minimization. Using this proposed method, temporarily occluded point including the case of self-occlusion does not pose a problem. As long as the point correspondences displayed in the video sequence have enough parallax, these missing points can still be reconstructed.

Effect of Gibberellic Acid and 2,4- Dichlorophenoxyacetic Acid on Fruit Development and Fruit Quality of Wax Apple

This study was conducted to evaluate the effects of gibberellic acid and 2,4- dichlorophenoxyacetic acid on flower number, fruit growth and fruit quality of wax apple. GA3 and 2,4-D were applied at small bud and petal fall stage. Number of flower, fruit set, fruit drop, fruit crack, fruit growth and fruit quality were recorded. Results indicated that spraying with 10 ppm GA3 had the best results in number of flower. GA3 spray at 30 ppm gave the faster rate of fruit growth than the other treatments. Fruit set, fruit size as well as fruit weight markedly improved by spraying 30 ppm GA3, followed by 10 ppm GA3 compared to untreated control. Moreover, spray GA3 at 30 ppm was the most effective and increased total soluble solids, reduced titratable acidity and fruit drop. On the other hand, it was noticed that with 10 ppm 2,4-D application also enhanced the fruit growth rate, improved physiological and biochemical characters of fruit compared to untreated control. It was concluded that both GA3 and 2,4-D spray have positive effects on fruit development, reduced fruit drop, fruit crack and improved fruit quality of wax apple under field conditions.