A Fast and Robust Protocol for Reconstruction and Re-Enactment of Historical Sites

This research proposes a novel reconstruction protocol for restoring missing surfaces and low-quality edges and shapes in photos of artifacts at historical sites. The protocol starts with the extraction of a cloud of points. This extraction process is based on four subordinate algorithms, which differ in the robustness and amount of resultant. Moreover, they use different -but complementary- accuracy to some related features and to the way they build a quality mesh. The performance of our proposed protocol is compared with other state-of-the-art algorithms and toolkits. The statistical analysis shows that our algorithm significantly outperforms its rivals in the resultant quality of its object files used to reconstruct the desired model.

Technique for Processing and Preservation of Human Amniotic Membrane for Ocular Surface Reconstruction

Human amniotic membrane (HAM) is a useful biological material for the reconstruction of damaged ocular surface. The processing and preservation of HAM is critical to prevent the patients undergoing amniotic membrane transplant (AMT) from cross infections. For HAM preparation human placenta is obtained after an elective cesarean delivery. Before collection, the donor is screened for seronegativity of HCV, Hbs Ag, HIV and Syphilis. After collection, placenta is washed in balanced salt solution (BSS) in sterile environment. Amniotic membrane is then separated from the placenta as well as chorion while keeping the preparation in BSS. Scrapping of HAM is then carried out manually until all the debris is removed and clear transparent membrane is acquired. Nitrocellulose membrane filters are then placed on the stromal side of HAM, cut around the edges with little membrane folded towards other side making it easy to separate during surgery. HAM is finally stored in solution of glycerine and Dulbecco-s Modified Eagle Medium (DMEM) in 1:1 ratio containing antibiotics. The capped borosil vials containing HAM are kept at -80°C until use. This vial is thawed to room temperature and opened under sterile operation theatre conditions at the time of surgery.

Face Reconstruction and Camera Pose Using Multi-dimensional Descent

This paper aims to propose a novel, robust, and simple method for obtaining a human 3D face model and camera pose (position and orientation) from a video sequence. Given a video sequence of a face recorded from an off-the-shelf digital camera, feature points used to define facial parts are tracked using the Active- Appearance Model (AAM). Then, the face-s 3D structure and camera pose of each video frame can be simultaneously calculated from the obtained point correspondences. This proposed method is primarily based on the combined approaches of Gradient Descent and Powell-s Multidimensional Minimization. Using this proposed method, temporarily occluded point including the case of self-occlusion does not pose a problem. As long as the point correspondences displayed in the video sequence have enough parallax, these missing points can still be reconstructed.

Optical 3D-Surface Reconstruction of Weak Textured Objects Based on an Approach of Disparity Stereo Inspection

Optical 3D measurement of objects is meaningful in numerous industrial applications. In various cases shape acquisition of weak textured objects is essential. Examples are repetition parts made of plastic or ceramic such as housing parts or ceramic bottles as well as agricultural products like tubers. These parts are often conveyed in a wobbling way during the automated optical inspection. Thus, conventional 3D shape acquisition methods like laser scanning might fail. In this paper, a novel approach for acquiring 3D shape of weak textured and moving objects is presented. To facilitate such measurements an active stereo vision system with structured light is proposed. The system consists of multiple camera pairs and auxiliary laser pattern generators. It performs the shape acquisition within one shot and is beneficial for rapid inspection tasks. An experimental setup including hardware and software has been developed and implemented.

A Stereo Vision System for Top View Book Scanners

This paper proposes a novel stereo vision technique for top view book scanners which provide us with dense 3d point clouds of page surfaces. This is a precondition to dewarp bound volumes independent of 2d information on the page. Our method is based on algorithms, which normally require the projection of pattern sequences with structured light. We use image sequences of the moving stripe lighting of the top view scanner instead of an additional light projection. Thus the stereo vision setup is simplified without losing measurement accuracy. Furthermore we improve a surface model dewarping method through introducing a difference vector based on real measurements. Although our proposed method is hardly expensive neither in calculation time nor in hardware requirements we present good dewarping results even for difficult examples.

A Study on Applying 3D Reconstruction to 3D Last Morphing

When it comes to last, it is regarded as the critical foundation of shoe design and development. A computer aided methodology for various last form designs is proposed in this study. The reverse engineering is mainly applied to the process of scanning for the last form. Then with the minimum energy for revision of surface continuity, the surface reconstruction of last is rebuilt by the feature curves of the scanned last. When the surface reconstruction of last is completed, the weighted arithmetic mean method is applied to the computation on the shape morphing for the control mesh of last, thus 3D last form of different sizes is generated from its original form feature with functions remained. In the end, the result of this study is applied to an application for 3D last reconstruction system. The practicability of the proposed methodology is verified through later case studies.