Breeding Biology and Induced Breeding Status of Freshwater Mud Eel, Monopterus cuchia

In this study, breeding biology and induced breeding of freshwater mud eel, Monopterus cuchia was observed during the experimental period from February to June, 2013. Breeding biology of freshwater mud eel, Monopterus cuchia was considered in terms of gonadosomatic index, length-weight relationship of gonad, ova diameter and fecundity. The ova diameter was recorded from 0.3 mm to 4.30 mm and the individual fecundity was recorded from 155 to 1495 while relative fecundity was found from 2.64 to 12.45. The fecundity related to body weight and length of fish was also discussed. A peak of GSI was observed 2.14±0.2 in male and 5.1 ±1.09 in female. Induced breeding of freshwater mud eel, Monopterus cuchia was also practiced with different doses of different inducing agents like pituitary gland (PG), human chorionic gonadotropin (HCG), Gonadotropin releasing hormone (GnRH) and Ovuline-a synthetic hormone in different environmental conditions. However, it was observed that the artificial breeding of freshwater mud eel, Monopterus cuchia was not yet succeeded through inducing agents in captive conditions, rather the inducing agent showed negative impacts on fecundity and ovarian tissues. It was seen that mature eggs in the oviduct were reduced, absorbed and some eggs were found in spoiled condition.

Delineation of Oil – Polluted Sites in Ibeno LGA, Nigeria, Using Microbiological and Physicochemical Characterization

Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the highest crude oil & condensate producer in Nigeria has its operational base and an oil terminal, the Qua Iboe terminal (QIT) located at Ibeno, Nigeria. Other oil companies like Network Exploration and Production Nigeria Ltd, Frontier Oil Ltd; Shell Petroleum Development Company Ltd; Elf Petroleum Nigeria Ltd and Nigerian Agip Energy, a subsidiary of the Italian ENI E&P operate onshore, on the continental shelf and in deep offshore of the Atlantic Ocean, respectively with the coastal waters of Ibeno, Nigeria as the nearest shoreline. This study was designed to delineate the oil-polluted sites in Ibeno, Nigeria using microbiological and physico-chemical characterization of soils, sediments and ground and surface water samples from the study area. Results obtained revealed that there have been significant recent hydrocarbon inputs into this environment as observed from the high counts of hydrocarbonoclastic microorganisms in excess of 1% at all the stations sampled. Moreover, high concentrations of THC, BTEX and heavy metals contents in all the samples analyzed corroborate the high recent crude oil input into the study area. The results also showed that the pollution of the different environmental media sampled were of varying degrees, following the trend: ground water > surface water > sediments > soils.

Assessment of Agricultural Land Use Land Cover, Land Surface Temperature and Population Changes Using Remote Sensing and GIS: Southwest Part of Marmara Sea, Turkey

Land Use Land Cover (LULC) changes due to human activities and natural causes have become a major environmental concern. Assessment of temporal remote sensing data provides information about LULC impacts on environment. Land Surface Temperature (LST) is one of the important components for modeling environmental changes in climatological, hydrological, and agricultural studies. In this study, LULC changes (September 7, 1984 and July 8, 2014) especially in agricultural lands together with population changes (1985-2014) and LST status were investigated using remotely sensed and census data in South Marmara Watershed, Turkey. LULC changes were determined using Landsat TM and Landsat OLI data acquired in 1984 and 2014 summers. Six-band TM and OLI images were classified using supervised classification method to prepare LULC map including five classes including Forest (F), Grazing Land (G), Agricultural Land (A), Water Surface (W), Residential Area-Bare Soil (R-B) classes. The LST image was also derived from thermal bands of the same dates. LULC classification results showed that forest areas, agricultural lands, water surfaces and residential area-bare soils were increased as 65751 ha, 20163 ha, 1924 ha and 20462 ha respectively. In comparison, a dramatic decrement occurred in grazing land (107985 ha) within three decades. The population increased 29% between years 1984-2014 in whole study area. Along with the natural causes, migration also caused this increase since the study area has an important employment potential. LULC was transformed among the classes due to the expansion in residential, commercial and industrial areas as well as political decisions. In the study, results showed that agricultural lands around the settlement areas transformed to residential areas in 30 years. The LST images showed that mean temperatures were ranged between 26-32°C in 1984 and 27-33°C in 2014. Minimum temperature of agricultural lands was increased 3°C and reached to 23°C. In contrast, maximum temperature of A class decreased to 41°C from 44°C. Considering temperatures of the 2014 R-B class and 1984 status of same areas, it was seen that mean, min and max temperatures increased by 2°C. As a result, the dynamism of population, LULC and LST resulted in increasing mean and maximum surface temperatures, living spaces/industrial areas and agricultural lands.

Turkey in Minds: Cognitive and Social Representations of "East" and "West"

Perception, evaluation and representation of the environment have been the subject of many disciplines including psychology, geography and architecture. In environmental and social psychology literature there are several evidences which suggest that cognitive representations about a place consisted of not only geographic items but also social and cultural. Mental representations of residence area or a country are influenced and determined by social-demographics, the physical and social context. Thus, all mental representations of a given place are also social representations. Cognitive maps are the main and common instruments that are used to identify spatial images and the difference between physical and subjective environments. The aim of the current study is investigating the mental and social representations of Turkey in university students’ minds. Data was collected from 249 university students from different departments (i.e. psychology, geography, history, tourism departments) of Ege University. Participants were requested to reflect Turkey in their mind onto the paper drawing sketch maps. According to the results, cognitive maps showed geographic aspects of Turkey as well as the context of symbolic, cultural and political reality of Turkey. That is to say, these maps had many symbolic and verbal items related to critics on social and cultural problems, ongoing ethnic and political conflicts, and actual political agenda of Turkey. Additionally, one of main differentiations in these representations appeared in terms of the East and West side of the Turkey, and the representations of the East and West was varied correspondingly participants’ cultural background, their ethnic values, and where they have born. The results of the study were discussed in environmental and social psychological perspective considering cultural and social values of Turkey and current political circumstances of the country.

Participatory Democracy to the Contemporary Problems of Polish Social Policy

Socio-economic development, which is seen around the world today, has contributed to the emergence of new problems of a social nature. Different political, historical, geographical or economic conditions cause that, in addition to global issues of social policy such as an aging population, unemployment, migration, countries, regions, there are also specific new problems that require diagnosis, individualized approach and efficient, planned solutions. These should include, among others, digital addiction, peer violence, obesity among children, the problem of ‘legal highs’, stress, depression, diseases associated with environmental pollution etc. The central authorities, selected most often with the tools specific to representative democracy, that is, the general election, for many reasons, inter alia, organizational, communication, are not able to effectively diagnose their intensity, territorial distribution, and thus to effectively fight them. This article aims to show how in Poland, citizens influence solving problems related to the broader social policy implemented at the local government level and indicates the possibilities of improving those solutions. The conclusions of theoretical analysis have been supported by empirical studies, which tested the use of instruments of participatory democracy in the planning and creation of communal strategies for solving social problems in one of the Polish voivodeships.

Performance Comparison of a Low Cost Air Quality Sensor with a Commercial Electronic Nose

The Figaro AM-1 sensor module which employs TGS 2600 model gas sensor in air quality assessment was used. The system was coupled with a microprocessor that enables sensor module to create warning message via telephone. This low cot sensor system’s performance was compared with a DiagNose II commercial electronic nose system. Both air quality sensor and electronic nose system employ metal oxide chemical gas sensors. In the study experimental setup, data acquisition methods for electronic nose system, and performance of the low cost air quality system were evaluated and explained.

Value for Money in Investment Projects

Construction and reconstruction of settlements and individual municipalities, environmental management and the creation, deployment of the forces of production and building transport and technical equipment requires a large expenditure of material and human resources. That is why the economic aspects of the majority decision in these planes built in the foreground and are often decisive. Thereby but more serious is that the economic aspects of the settlement, the creation and function remain in their whole, unprocessed, and cannot speak of a set of individual techniques and methods traditional indicators and experiments with new approaches. This is true both at the level of the national economy, and in their own urban designs. Still a few remain identified specific economic shaping patterns of settlement and the less it is possible to speak of their control. Also practical assessing economics of specific solutions are often used non-apt indicators in addition to economics usually identifies with the lowest acquisition cost or high-intensity land use with little regard for functional efficiency and little studied much higher operating and maintenance costs".

Fuzzy Inference System Based Unhealthy Region Classification in Plant Leaf Image

In addition to environmental parameters like rain, temperature diseases on crop is a major factor which affects production quality & quantity of crop yield. Hence disease management is a key issue in agriculture. For the management of disease, it needs to be detected at early stage. So, treat it properly & control spread of the disease. Now a day, it is possible to use the images of diseased leaf to detect the type of disease by using image processing techniques. This can be achieved by extracting features from the images which can be further used with classification algorithms or content based image retrieval systems. In this paper, color image is used to extract the features such as mean and standard deviation after the process of region cropping. The selected features are taken from the cropped image with different image size samples. Then, the extracted features are taken in to the account for classification using Fuzzy Inference System (FIS).

Development of Sustainable Building Environmental Model (SBEM) in Hong Kong

This study addresses a concept of the Sustainable Building Environmental Model (SBEM) developed to optimize energy consumption in air conditioning and ventilation (ACV) systems without any deterioration of indoor environmental quality (IEQ). The SBEM incorporates two main components: an adaptive comfort temperature control module (ACT) and a new carbon dioxide demand control module (nDCV). These two modules take an innovative approach to maintain satisfaction of the Indoor Environmental Quality (IEQ) with optimum energy consumption; they provide a rational basis of effective control. A total of 2133 sets of measurement data of indoor air temperature (Ta), relative humidity (Rh) and carbon dioxide concentration (CO2) were conducted in some Hong Kong offices to investigate the potential of integrating the SBEM. A simulation was used to evaluate the dynamic performance of the energy and air conditioning system with the integration of the SBEM in an air-conditioned building. It allows us make a clear picture of the control strategies and performed any pre-tuned of controllers before utilized in real systems. With the integration of SBEM, it was able to save up to 12.3% in simulation of overall electricity consumption, and maintain the average carbon dioxide concentration within 1000ppm and occupant dissatisfaction in 20%. 

An Application-Based Indoor Environmental Quality (IEQ) Calculator for Residential Buildings

Based on an indoor environmental quality (IEQ) index established by previous work that indicates the overall IEQ acceptance from the prospect of an occupant in residential buildings in terms of four IEQ factors - thermal comfort, indoor air quality, visual and aural comforts, this study develops a user-friendly IEQ calculator for iOS and Android users to calculate the occupant acceptance and compare the relative performance of IEQ in apartments. “IEQ calculator” is easy to use and it preliminarily illustrates the overall indoor environmental quality on the spot. Users simply input indoor parameters such as temperature, number of people and windows are opened or closed for the mobile application to calculate the scores in four areas: the comforts of temperature, brightness, noise and indoor air quality. The calculator allows the prediction of the best IEQ scenario on a quantitative scale. Any indoor environments under the specific IEQ conditions can be benchmarked against the predicted IEQ acceptance range. This calculator can also suggest how to achieve the best IEQ acceptance among a group of residents. 

Indirect Solar Desalination: Value Engineering and Cost Benefit Analysis

This study examines the feasibility of indirect solar desalination in oil producing countries in the Middle East and North Africa (MENA) region. It relies on value engineering (VE) and costbenefit with sensitivity analyses to identify optimal coupling configurations of desalination and solar energy technologies. A comparative return on investment was assessed as a function of water costs for varied plant capacities (25,000 to 75,000 m3/day), project lifetimes (15 to 25 years), and discount rates (5 to 15%) taking into consideration water and energy subsidies, land cost as well as environmental externalities in the form of carbon credit related to greenhouse gas (GHG) emissions reduction. The results showed reverse osmosis (RO) coupled with photovoltaic technologies (PVs) as the most promising configuration, robust across different prices for Brent oil, discount rates, as well as different project lifetimes. Environmental externalities and subsidies analysis revealed that a 16% reduction in existing subsidy on water tariffs would ensure economic viability. Additionally, while land costs affect investment attractiveness, the viability of RO coupled with PV remains possible for a land purchase cost

Performance Evaluation of an Inventive CO2 Gas Separation Inorganic Ceramic Membrane

Atmospheric carbon dioxide emissions are considered as the greatest environmental challenge the world is facing today. The tasks to control the emissions include the recovery of CO2 from flue gas. This concern has been improved due to recent advances in materials process engineering resulting in the development of inorganic gas separation membranes with excellent thermal and mechanical stability required for most gas separations. This paper, therefore, evaluates the performance of a highly selective inorganic membrane for CO2 recovery applications. Analysis of results obtained is in agreement with experimental literature data. Further results show the prediction performance of the membranes for gas separation and the future direction of research. The materials selection and the membrane preparation techniques are discussed. Method of improving the interface defects in the membrane and its effect on the separation performance has also been reviewed and in addition advances to totally exploit the potential usage of this innovative membrane.

Mercury Removal Using Pseudomonas putida (ATTC 49128): Effect of Acclimatization Time, Speed and Temperature of Incubator Shaker

Microbes have been used to solve environmental problems for many years. The role of microorganism to sequester, precipitate or alter the oxidation state of various heavy metals has been extensively studied. Treatment using microorganism interacts with toxic metal are very diverse. The purpose of this research is to remove the mercury using Pseudomonas putida (P. putida), pure culture ATTC 49128 at optimum growth parameters such as techniques of culture, acclimatization time and speed of incubator shaker. Thus, in this study, the optimum growth parameters of P. putida were obtained to achieve the maximum of mercury removal. Based on the optimum parameters of P. putida for specific growth rate, the removal of two different mercury concentration, 1 ppm and 4 ppm were studied. From mercury nitrate solution, a mercuryresistant bacterial strain which is able to reduce from ionic mercury to metallic mercury was used to reduce ionic mercury. The overall levels of mercury removal in this study were between 80% and 89%. The information obtained in this study is of fundamental for understanding of the survival of P. putida ATTC 49128 in mercury solution. Thus, microbial mercury removal is a potential bioremediation for wastewater especially in petrochemical industries in Malaysia.

Characterization of the Dispersion Phenomenon in an Optical Biosensor

Optical biosensors have become a powerful detection and analysis tool for wide-ranging applications in biomedical research, pharmaceuticals and environmental monitoring. This study carried out the computational fluid dynamics (CFD)-based simulations to explore the dispersion phenomenon in the micro channel of an optical biosensor. The predicted time sequences of concentration contours were utilized to better understand the dispersion development occurred in different geometric shapes of micro channels. The simulation results showed the surface concentrations at the sensing probe (with the best performance of a grating coupler) in respect of time to appraise the dispersion effect and therefore identify the design configurations resulting in minimum dispersion.

Changing Geomorphosites in a Changing Lake: How Environmental Changes in Urmia Lake Have Been Driving Vanishing or Creating of Geomorphosites

Any variation in environmental characteristics of geomorphosites would lead to destabilisation of their geotouristic values all around the planet. The Urmia lake, with an area of approximately 5,500 km2 and a catchment area of 51,876 km2, and to which various reasons over time, especially in the last fifty years have seen a sharp decline and have decreased by about 93 % in two recent decades. These variations are not only driving significant changes in the morphology and ecology of the present lake landscape, but at the same time are shaping newly formed morphologies, which vanished some valuable geomorphosites or develop into smaller geomorphosites with significant value from a scientific and cultural point of view. This paper analyses and discusses features and evolution in several representative coastal and island geomorphosites. For this purpose, a total of 23 geomorphosites were studied in two data series (1963 and 2015) and the respective data were compared and analysed. The results showed, the total loss in geomorphosites area in a half century amounted to a loss of more than 90% of the valuable geomorphosites. Moreover, the comparison between the mean yearly value of coastal area lost over the entire period and the yearly average calculated for the shorter period (1998- 2014) clearly indicates a pattern of acceleration. This acceleration in the rate of reduction in lake area was seen in most of the southern half of the lake. In the region as well, the general water-level falling is not only causing the loss of a significant water resource, which is followed by major impact on regional ecosystems, but is also driving the most marked recent (last century) changes in the geotouristic landscapes. In fact, the disappearance of geomorphosites means the loss of tourism phenomenon. In this context attention must be paid to the question of conservation. The action needed to safeguard geomorphosites includes: 1) Preventive action, 2) Corrective action, and 3) Sharing knowledge.

Effect of Evaporator Temperature on the Performance of Water Desalination/Refrigeration Adsorption System Using AQSOA-ZO2

Many water desalination technologies have been developed but in general they are energy intensive and have high cost and adverse environmental impact. Recently, adsorption technology for water desalination has been investigated showing the potential of using low temperature waste heat (50-85oC) thus reducing energy consumption and CO2 emissions. This work mathematically compares the performance of an adsorption cycle that produces two useful effects namely, fresh water and cooling using two different adsorbents, silica-gel and an advanced zeolite material AQSOA-ZO2, produced by Mitsubishi plastics. It was found that at low chilled water temperatures, typically below 20oC, the AQSOA-Z02 is more efficient than silica-gel as the cycle can produce 5.8 m3 of fresh water per day and 50.1 Rton of cooling per tonne of AQSOA-ZO2. Above 20oC silica-gel is still better as the cycle production reaches 8.4 m3 per day and 62.4 Rton per tonne of silica-gel. These results show the potential of using the AQSOA-Z02 at low chilled water temperature for water desalination and cooling applications.

A Smart Monitoring System for Preventing Gas Risks in Indoor

In this paper, we propose a system for preventing gas risks through the use of wireless communication modules and intelligent gas safety appliances. Our system configuration consists of an automatic extinguishing system, detectors, a wall-pad, and a microcomputer controlled micom gas meter to monitor gas flow and pressure as well as the occurrence of earthquakes. The automatic fire extinguishing system checks for both combustible gaseous leaks and monitors the environmental temperature, while the detector array measures smoke and CO gas concentrations. Depending on detected conditions, the micom gas meter cuts off an inner valve and generates a warning, the automatic fire-extinguishing system cuts off an external valve and sprays extinguishing materials, or the sensors generate signals and take further action when smoke or CO are detected. Information on intelligent measures taken by the gas safety appliances and sensors are transmitted to the wall-pad, which in turn relays this as real time data to a server that can be monitored via an external network (BcN) connection to a web or mobile application for the management of gas safety. To validate this smart-home gas management system, we field-tested its suitability for use in Korean apartments under several scenarios.

Phthalate Exposure among Roma Population in Slovakia

Phthalates are ubiquitous environmental pollutants well known because of their endocrine disrupting activity in human organism. The aim of our study was, by biological monitoring, investigate exposure to phthalates of Roma ethnicity group i.e. children and adults from 5 families (n=29, average age 11.8 ± 7.6 years) living in western Slovakia. Additionally, we analysed some associations between anthropometric measures, questionnaire data i.e. socio-economic status, eating and drinking habits, practise of personal care products and household conditions in comparison with concentrations of phthalate metabolites. We used for analysis of urine samples high performance liquid chromatography and tandem mass spectrometry (HPLC-MS/MS) to determine concentrations of phthalate metabolites monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-iso-butyl phthalate (MiBP), mono(2-ethyl- 5-hydroxyhexyl) phthalate (5OH-MEHP), mono(2-ethyl-5-oxohexyl) phthalate (5oxo-MEHP) and mono(2-etylhexyl) phthalate (MEHP). Our results indicate that ethnicity, lower socioeconomic status and different housing conditions in Roma population can affect urinary concentration of phthalate metabolites.

Value Index, a Novel Decision Making Approach for Waste Load Allocation

Waste load allocation (WLA) policies may use multiobjective optimization methods to find the most appropriate and sustainable solutions. These usually intend to simultaneously minimize two criteria, total abatement costs (TC) and environmental violations (EV). If other criteria, such as inequity, need for minimization as well, it requires introducing more binary optimizations through different scenarios. In order to reduce the calculation steps, this study presents value index as an innovative decision making approach. Since the value index contains both the environmental violation and treatment costs, it can be maximized simultaneously with the equity index. It implies that the definition of different scenarios for environmental violations is no longer required. Furthermore, the solution is not necessarily the point with minimized total costs or environmental violations. This idea is testified for Haraz River, in north of Iran. Here, the dissolved oxygen (DO) level of river is simulated by Streeter-Phelps equation in MATLAB software. The WLA is determined for fish farms using multi-objective particle swarm optimization (MOPSO) in two scenarios. At first, the trade-off curves of TC-EV and TC-Inequity are plotted separately as the conventional approach. In the second, the Value-Equity curve is derived. The comparative results show that the solutions are in a similar range of inequity with lower total costs. This is due to the freedom of environmental violation attained in value index. As a result, the conventional approach can well be replaced by the value index particularly for problems optimizing these objectives. This reduces the process to achieve the best solutions and may find better classification for scenario definition. It is also concluded that decision makers are better to focus on value index and weighting its contents to find the most sustainable alternatives based on their requirements.

Inversion of Electrical Resistivity Data: A Review

High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.