Design Aesthetics of Mobile Interface

Mobiles are considered to be the most frequently used electronic items in world after electricity. It is probably the only device that can be used by any gender with no age limits depending on its functionality. This paper present the interactive interface of Mobile and particularly aiming the use of advanced phones which are also called smart phones. With the changes in the trend where users are now moving from ordinary mobiles to the one with touch screens and facilities such as WiFi and internet browsing.

InAlGaN Quaternary Multi-Quantum Wells UVLaser Diode Performance and Characterization

The InAlGaN alloy has only recently began receiving serious attention into its growth and application. High quality InGaN films have led to the development of light emitting diodes (LEDs) and blue laser diodes (LDs). The quaternary InAlGaN however, represents a more versatile material since the bandgap and lattice constant can be independently varied. We report an ultraviolet (UV) quaternary InAlGaN multi-quantum wells (MQWs) LD study by using the simulation program of Integrated System Engineering (ISE TCAD). Advanced physical models of semiconductor properties were used in order to obtain an optimized structure. The device performance which is affected by piezoelectric and thermal effects was studied via drift-diffusion model for carrier transport, optical gain and loss. The optical performance of the UV LD with different numbers of quantum wells was numerically investigated. The main peak of the emission wavelength for double quantum wells (DQWs) was shifted from 358 to 355.8 nm when the forward current was increased. Preliminary simulated results indicated that better output performance and lower threshold current could be obtained when the quantum number is four, with output power of 130 mW and threshold current of 140 mA.

Study of Soil Contaminated with Arsenic, Cadmium and Lead in Ancient Tailings in Zacatecas, México

Due to the growth of the urban area towards lands contaminated with ancient tails, in this work we evaluated if the leaching with calcium thiosulfate (CaS2O3) for the recovery of silver, gold and mercury from this soil, also dissolves arsenic, cadmium and lead; for this, we determined their quantity per each fraction of size of particle of the soil before and after the dissolution. Half of the soil samples were leached in the plant Beneficiadora de Jales del Centro, S. A. de C.V. and the rest of them remained in the laboratory. The ICP-OES technique was used to determine the amounts of arsenic, cadmium and lead, in the samples of both lots. The soil samples were collected in a neighboring area at El Lampotal, Vetagrande, Zacatecas, México, with an extension of 600 m2 at 22º52' 37.69'' N, 102º25' 11.73'' W. The amount of arsenic, cadmium and lead found in nonleached soil and for a particle size of 47 μm was 203.72±3.73, 33.63±1.31 and 3480.99±20.4 mg/kg respectively.

A Generic e-Tutor for Graphical Problems

For a variety of safety and economic reasons, engineering undergraduates in Australia have experienced diminishing access to the real hardware that is typically the embodiment of their theoretical studies. This trend will delay the development of practical competence, decrease the ability to model and design, and suppress motivation. The author has attempted to address this concern by creating a software tool that contains both photographic images of real machinery, and sets of graphical modeling 'tools'. Academics from a range of disciplines can use the software to set tutorial tasks, and incorporate feedback comments for a range of student responses. An evaluation of the software demonstrated that students who had solved modeling problems with the aid of the electronic tutor performed significantly better in formal examinations with similar problems. The 2-D graphical diagnostic routines in the Tutor have the potential to be used in a wider range of problem-solving tasks.

An Investigation into the Application of Artificial Neural Networks to the Prediction of Injuries in Sport

Artificial Neural Networks (ANNs) have been used successfully in many scientific, industrial and business domains as a method for extracting knowledge from vast amounts of data. However the use of ANN techniques in the sporting domain has been limited. In professional sport, data is stored on many aspects of teams, games, training and players. Sporting organisations have begun to realise that there is a wealth of untapped knowledge contained in the data and there is great interest in techniques to utilise this data. This study will use player data from the elite Australian Football League (AFL) competition to train and test ANNs with the aim to predict the onset of injuries. The results demonstrate that an accuracy of 82.9% was achieved by the ANNs’ predictions across all examples with 94.5% of all injuries correctly predicted. These initial findings suggest that ANNs may have the potential to assist sporting clubs in the prediction of injuries.

Large-Eddy Simulations of Subsonic Impinging Jets

We consider here the subsonic impinging jet representing the flow field of a vertical take-off aircraft or the initial stage of rocket launching. Implicit Large-Eddy Simulation (ILES) is used to calculate the time-dependent flow field and the radiate sound pressure associated with jet impinging. With proper boundary treatments and high-order numerical scheme, the near field sound pressure is successfully obtained. Results are presented for both a rectangular as well a circular jet.

Development of a Brain Glutamate Microbiosensor

This work attempts to improve the permselectivity of poly-ortho-phenylenediamine (PPD) coating for glutamate biosensor applications on Pt microelectrode, using constant potential amperometry and cyclic voltammetry. Percentage permeability of the modified PPD microelectrode was carried out towards hydrogen peroxide (H2O2) and ascorbic acid (AA) whereas permselectivity represents the percentage interference by AA in H2O2 detection. The 50-μm diameter Pt disk microelectrode showed a good permeability value toward H2O2 (95%) and selectivity against AA (0.01%) compared to other sizes of electrode studied here. The electrode was further modified with glutamate oxidase (GluOx) that was immobilized and cross linked with glutaraldehyde (GA, 0.125%), resulting in Pt/PPD/GluOx-GA electrode design. The maximum current density Jmax and apparent Michaelis constant, KM, obtained on Pt/PPD/GluOx-GA electrodes were 48 μA cm-2 and 50 μM, respectively. The linear region slope (LRS) was 0.96 μA cm-2 mM-1. The detection limit (LOD) for glutamate was 3.0 ± 0.6 μM. This study shows a promising glutamate microbiosensor for brain glutamate detection. 

A Real-time Computer Vision System for VehicleTracking and Collision Detection

Recent developments in automotive technology are focused on economy, comfort and safety. Vehicle tracking and collision detection systems are attracting attention of many investigators focused on safety of driving in the field of automotive mechatronics. In this paper, a vision-based vehicle detection system is presented. Developed system is intended to be used in collision detection and driver alert. The system uses RGB images captured by a camera in a car driven in the highway. Images captured by the moving camera are used to detect the moving vehicles in the image. A vehicle ahead of the camera is detected in daylight conditions. The proposed method detects moving vehicles by subtracting successive images. Plate height of the vehicle is determined by using a plate recognition algorithm. Distance of the moving object is calculated by using the plate height. After determination of the distance of the moving vehicle relative speed of the vehicle and Time-to-Collision are calculated by using distances measured in successive images. Results obtained in road tests are discussed in order to validate the use of the proposed method.

Expelling Policy Based Buffer Control during Congestion in Differentiated Service Routers

In this paper a special kind of buffer management policy is studied where the packet are preempted even when sufficient space is available in the buffer for incoming packets. This is done to congestion for future incoming packets to improve QoS for certain type of packets. This type of study has been done in past for ATM type of scenario. We extend the same for heterogeneous traffic where data rate and size of the packets are very versatile in nature. Typical example of this scenario is the buffer management in Differentiated Service Router. There are two aspects that are of interest. First is the packet size: whether all packets have same or different sizes. Second aspect is the value or space priority of the packets, do all packets have the same space priority or different packets have different space priorities. We present two types of policies to achieve QoS goals for packets with different priorities: the push out scheme and the expelling scheme. For this work the scenario of packets of variable length is considered with two space priorities and main goal is to minimize the total weighted packet loss. Simulation and analytical studies show that, expelling policies can outperform the push out policies when it comes to offering variable QoS for packets of two different priorities and expelling policies also help improve the amount of admissible load. Some other comparisons of push out and expelling policies are also presented using simulations.

Managing Handheld Devices in Ad-Hoc Collaborative Computing Environments

The noticeable advance in the area of computer technology has paved the way for the invention of powerful mobile devices. However, limited storage, short battery life, and relatively low computational power define the major problems of such devices. Due to the ever increasing computational requirements, such devices may fail to process needed tasks under certain constraints. One of the proposed solutions to this drawback is the introduction of Collaborative Computing, a new concept dealing with the distribution of computational tasks amongst several handhelds. This paper introduces the basics of Collaborative Computing, and proposes a new protocol that aims at managing and optimizing computing tasks in Ad-Hoc Collaborative Computing Environments.

A New Traffic Pattern Matching for DDoS Traceback Using Independent Component Analysis

Recently, Denial of Service(DoS) attacks and Distributed DoS(DDoS) attacks which are stronger form of DoS attacks from plural hosts have become security threats on the Internet. It is important to identify the attack source and to block attack traffic as one of the measures against these attacks. In general, it is difficult to identify them because information about the attack source is falsified. Therefore a method of identifying the attack source by tracing the route of the attack traffic is necessary. A traceback method which uses traffic patterns, using changes in the number of packets over time as criteria for the attack traceback has been proposed. The traceback method using the traffic patterns can trace the attack by matching the shapes of input traffic patterns and the shape of output traffic pattern observed at a network branch point such as a router. The traffic pattern is a shapes of traffic and unfalsifiable information. The proposed trace methods proposed till date cannot obtain enough tracing accuracy, because they directly use traffic patterns which are influenced by non-attack traffics. In this paper, a new traffic pattern matching method using Independent Component Analysis(ICA) is proposed.

Processing and Assessment of Quality Characteristics of Composite Baby Foods

The usefulness of weaning foods to meet the nutrient needs of children is well recognized, and most of them are precooked roller dried mixtures of cereal and/or legume flours which posses a high viscosity and bulk when reconstituted. The objective of this study was to formulate composite weaning foods using cereals, malted legumes and vegetable powders and analyze them for nutrients, functional properties and sensory attributes. Selected legumes (green gram and lentil) were germinated, dried and dehulled. Roasted wheat, rice, carrot powder and skim milk powder also were used. All the ingredients were mixed in different proportions to get four formulations, made into 30% slurry and dried in roller drier. The products were analyzed for proximate principles, mineral content, functional and sensory qualities. The results of analysis showed following range of constituents per 100g of formulations on dry weight basis, protein, 18.1-18.9 g ; fat, 0.78-1.36 g ; iron, 5.09-6.53 mg; calcium, 265-310 mg. The lowest water absorption capacity was in case of wheat green gram based and the highest was in rice lentil based sample. Overall sensory qualities of all foods were graded as “good" and “very good" with no significant differences. The results confirm that formulated weaning foods were nutritionally superior, functionally appropriate and organoleptically acceptable.

Domain-based Key Management Scheme for Active Network

Active network was developed to solve the problem of the current sharing-based network–difficulty in applying new technology, service or standard, and duplicated operation at several protocol layers. Active network can transport the packet loaded with the executable codes, which enables to change the state of the network node. However, if the network node is placed in the sharing-based network, security and safety issues should be resolved. To satisfy this requirement, various security aspects are required such as authentication, authorization, confidentiality and integrity. Among these security components, the core factor is the encryption key. As a result, this study is designed to propose the scheme that manages the encryption key, which is used to provide security of the comprehensive active directory, based on the domain.

The Photo-Absorption and Surface Feature of Nano-Structured TIO2 Coatings

Titanium dioxide coatings were deposited by utilizing atmospheric plasma spraying (APS) system. The agglomerated nanopowder and different spraying parameters were used to determine their influences on the microstructure surface feature and photoabsorption of the coatings. The microstructure of as-sprayed TiO2 coatings were characterized by scanning electron microscope (SEM). Surface characteristics were investigated by Fourier Transform Infrared (FT-IR). The photo absorption was determined by UV-VIS spectrophotometer. It is found that the spray parameters have an influence on the microstructure, surface feature and photo-absorption of the TiO2 coatings.

Brand Personality and Mobile Marketing: An Empirical Investigation

This research assesses the value of the brand personality and its influence on consumer-s decision making, through relational variables, after receiving a text message ad. An empirical study, in which 380 participants have received an SMS ad, confirms that brand personality does actually influence the brand trust as well as the attachment and commitment. The levels of sensitivity and involvement have an impact on the brand personality and the related variables to it.

Performance of Heat Pump Dryer for Kaffir Lime Leaves and Quality of Dried Products under Different Temperatures and Media

This research is to study the performance of heat pump dryer for drying of kaffir lime leaves under different media and to compare the color values and essential oil content of final products after drying. In the experiments, kaffir lime leaves were dried in the closed-loop system at drying temperatures of 40, 50 and 60 oC. The drying media used in this study were hot air, CO2 and N2 gases. The velocity of drying media in the drying chamber was 0.4 m/s with bypass ratio of 30%. The initial moisture content of kaffir lime leaves was approximately 180-190 % d.b. It was dried until down to a final moisture content of 10% d.b. From the experiments, the results showed that drying rate, the coefficient of performance (COP) and specific energy consumption (SEC) depended on drying temperature. While drying media did not affect on drying rate. The time for kaffir lime leaves drying at 40, 50 and 60 oC was 10, 5 and 3 hours, respectively. The performance of the heat pump system decreased with drying temperature in the range of 2.20-3.51. In the aspect of final product color, the greenness and overall color had a great change under drying temperature at 60 oC rather than drying at 40 and 50 oC. When compared among drying media, the greenness and overall color of product dried with hot air at 60 oC had a great change rather than dried with CO2 and N2.

Using Multi-Objective Particle Swarm Optimization for Bi-objective Multi-Mode Resource-Constrained Project Scheduling Problem

In this paper the multi-mode resource-constrained project scheduling problem with discounted cash flows is considered. Minimizing the makespan and maximization the net present value (NPV) are the two common objectives that have been investigated in the literature. We apply one evolutionary algorithm named multiobjective particle swarm optimization (MOPSO) to find Pareto front solutions. We used standard sets of instances from the project scheduling problem library (PSPLIB). The results are computationally compared respect to different metrics taken from the literature on evolutionary multi-objective optimization.

Synthesis and Characterization of Cu-NanoWire Arrays by EMD Using ITO-Template

Nanowire arrays of copper with uniform diameters have been synthesized by potentiostatic electrochemical metal deposition (EMD) of copper sulphate and potassium chloride solution within the nano-channels of porous Indium-Tin Oxide (ITO), also known as Tin doped Indium Oxide templates. The nanowires developed were fairly continuous with diameters ranging from 110-140 nm along the entire length. Single as well as poly-crystalline copper wires have been prepared by application of appropriate potential during the EMD process. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), small angle electron diffraction (SAED) and atomic force microscopy (AFM) were used to characterize the synthesized nano wires at room temperature. The electrochemical response of synthesized products was evaluated by cyclic voltammetry while surface energy analysis was carried out using a Goniometer.

Analysis of Driver Point of Regard Determinations with Eye-Gesture Templates Using Receiver Operating Characteristic

An Advance Driver Assistance System (ADAS) is a computer system on board a vehicle which is used to reduce the risk of vehicular accidents by monitoring factors relating to the driver, vehicle and environment and taking some action when a risk is identified. Much work has been done on assessing vehicle and environmental state but there is still comparatively little published work that tackles the problem of driver state. Visual attention is one such driver state. In fact, some researchers claim that lack of attention is the main cause of accidents as factors such as fatigue, alcohol or drug use, distraction and speeding all impair the driver-s capacity to pay attention to the vehicle and road conditions [1]. This seems to imply that the main cause of accidents is inappropriate driver behaviour in cases where the driver is not giving full attention while driving. The work presented in this paper proposes an ADAS system which uses an image based template matching algorithm to detect if a driver is failing to observe particular windscreen cells. This is achieved by dividing the windscreen into 24 uniform cells (4 rows of 6 columns) and matching video images of the driver-s left eye with eye-gesture templates drawn from images of the driver looking at the centre of each windscreen cell. The main contribution of this paper is to assess the accuracy of this approach using Receiver Operating Characteristic analysis. The results of our evaluation give a sensitivity value of 84.3% and a specificity value of 85.0% for the eye-gesture template approach indicating that it may be useful for driver point of regard determinations.

Performance Analysis of MC-SS for the Indoor BPLC Systems

power-line networks are promise infrastructure for broadband services provision to end users. However, the network performance is affected by stochastic channel changing which is due to load impedances, number of branches and branched line lengths. It has been proposed that multi-carrier modulations techniques such as orthogonal frequency division multiplexing (OFDM), Multi-Carrier Spread Spectrum (MC-SS), wavelet OFDM can be used in such environment. This paper investigates the performance of different indoor topologies of power-line networks that uses MC-SS modulation scheme.It is observed that when a branch is added in the link between sending and receiving end of an indoor channel an average of 2.5dB power loss is found. In additional, when the branch is added at a node an average of 1dB power loss is found. Additionally when the terminal impedances of the branch change from line characteristic impedance to impedance either higher or lower values the channel performances were tremendously improved. For example changing terminal load from characteristic impedance (85 .) to 5 . the signal to noise ratio (SNR) required to attain the same performances were decreased from 37dB to 24dB respectively. Also, changing the terminal load from channel characteristic impedance (85 .) to very higher impedance (1600 .) the SNR required to maintain the same performances were decreased from 37dB to 23dB. The result concludes that MC-SS performs better compared with OFDM techniques in all aspects and especially when the channel is terminated in either higher or lower impedances.