Improving Location Management in Mobile IPv4 Networks

The Mobile IP Standard has been developed to support mobility over the Internet. This standard contains several drawbacks as in the cases where packets are routed via sub-optimal paths and significant amount of signaling messages is generated due to the home registration procedure which keeps the network aware of the current location of the mobile nodes. Recently, a dynamic hierarchical mobility management strategy for mobile IP networks (DHMIP) has been proposed to reduce home registrations costs. However, this strategy induces a packet delivery delay and increases the risk of packet loss. In this paper, we propose an enhanced version of the dynamic hierarchical strategy that reduces the packet delivery delay and minimizes the risk of packet loss. Preliminary results obtained from simulations are promising. They show that the enhanced version outperforms the original dynamic hierarchical mobility management strategy version.

Managing Handheld Devices in Ad-Hoc Collaborative Computing Environments

The noticeable advance in the area of computer technology has paved the way for the invention of powerful mobile devices. However, limited storage, short battery life, and relatively low computational power define the major problems of such devices. Due to the ever increasing computational requirements, such devices may fail to process needed tasks under certain constraints. One of the proposed solutions to this drawback is the introduction of Collaborative Computing, a new concept dealing with the distribution of computational tasks amongst several handhelds. This paper introduces the basics of Collaborative Computing, and proposes a new protocol that aims at managing and optimizing computing tasks in Ad-Hoc Collaborative Computing Environments.