The Baer Radical of Rings in Term of Prime and Semiprime Generalized Bi-ideals

Using the idea of prime and semiprime bi-ideals of rings, the concept of prime and semiprime generalized bi-ideals of rings is introduced, which is an extension of the concept of prime and semiprime bi-ideals of rings and some interesting characterizations of prime and semiprime generalized bi-ideals are obtained. Also, we give the relationship between the Baer radical and prime and semiprime generalized bi-ideals of rings in the same way as of biideals of rings which was studied by Roux.

A Comparison of Grey Model and Fuzzy Predictive Model for Time Series

The prediction of meteorological parameters at a meteorological station is an interesting and open problem. A firstorder linear dynamic model GM(1,1) is the main component of the grey system theory. The grey model requires only a few previous data points in order to make a real-time forecast. In this paper, we consider the daily average ambient temperature as a time series and the grey model GM(1,1) applied to local prediction (short-term prediction) of the temperature. In the same case study we use a fuzzy predictive model for global prediction. We conclude the paper with a comparison between local and global prediction schemes.

Flocking Behaviors for Multiple Groups with Heterogeneous Agents

Most of researches for conventional simulations were studied focusing on flocks with a single species. While there exist the flocking behaviors with a single species in nature, the flocking behaviors are frequently observed with multi-species. This paper studies on the flocking simulation for heterogeneous agents. In order to simulate the flocks for heterogeneous agents, the conventional method uses the identifier of flock, while the proposed method defines the feature vector of agent and uses the similarity between agents by comparing with those feature vectors. Based on the similarity, the paper proposed the attractive force and repulsive force and then executed the simulation by applying two forces. The results of simulation showed that flock formation with heterogeneous agents is very natural in both cases. In addition, it showed that unlike the existing method, the proposed method can not only control the density of the flocks, but also be possible for two different groups of agents to flock close to each other if they have a high similarity.

M-band Wavelet and Cosine Transform Based Watermark Algorithm Using Randomization and Principal Component Analysis

Computational techniques derived from digital image processing are playing a significant role in the security and digital copyrights of multimedia and visual arts. This technology has the effect within the domain of computers. This research presents discrete M-band wavelet transform (MWT) and cosine transform (DCT) based watermarking algorithm by incorporating the principal component analysis (PCA). The proposed algorithm is expected to achieve higher perceptual transparency. Specifically, the developed watermarking scheme can successfully resist common signal processing, such as geometric distortions, and Gaussian noise. In addition, the proposed algorithm can be parameterized, thus resulting in more security. To meet these requirements, the image is transformed by a combination of MWT & DCT. In order to improve the security further, we randomize the watermark image to create three code books. During the watermark embedding, PCA is applied to the coefficients in approximation sub-band. Finally, first few component bands represent an excellent domain for inserting the watermark.

The Influence of Biofuels on the Permeability of Sand-Bentonite Liners

Liners are made to protect the groundwater table from the infiltration of leachate which normally carries different kinds of toxic materials from landfills. Although these liners are engineered to last for long period of time; unfortunately these liners fail; therefore, toxic materials pass to groundwater. This paper focuses on the changes of the hydraulic conductivity of a sand-bentonite liner due to the infiltration of biofuel and ethanol fuel. Series of laboratory tests were conducted in 20-cm-high PVC columns. Several compositions of sand-bentonite liners were tested: 95% sand: 5% bentonite; 90% sand: 10% bentonite; and 100% sand (passed mesh #40). The columns were subjected to extreme pressures of 40 kPa, and 100 kPa to evaluate the transport of alternative fuels (biofuel and ethanol fuel). For comparative studies, similar tests were carried out using water. Results showed that hydraulic conductivity increased due to the infiltration of alternative fuels through the liners. Accordingly, the increase in the hydraulic conductivity showed significant dependency on the type of liner mixture and the characteristics of the liquid. The hydraulic conductivity of a liner (subjected to biofuel infiltration) consisting of 5% bentonite: 95% sand under pressure of 40 kPa and 100 kPa had increased by one fold. In addition, the hydraulic conductivity of a liner consisting of 10% bentonite: 90% sand under pressure of 40 kPa and 100 kPa and infiltrated by biofuel had increased by three folds. On the other hand, the results obtained by water infiltration under 40 kPa showed lower hydraulic conductivities of 1.50×10-5 and 1.37×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90% sand, respectively. Similarly, under 100 kPa, the hydraulic conductivities were 2.30×10-5 and 1.90×10-9 cm/s for 5% bentonite: 95% sand, and 10% bentonite: 90% sand, respectively.

Dynamic Metrics for Polymorphism in Object Oriented Systems

Metrics is the process by which numbers or symbols are assigned to attributes of entities in the real world in such a way as to describe them according to clearly defined rules. Software metrics are instruments or ways to measuring all the aspect of software product. These metrics are used throughout a software project to assist in estimation, quality control, productivity assessment, and project control. Object oriented software metrics focus on measurements that are applied to the class and other characteristics. These measurements convey the software engineer to the behavior of the software and how changes can be made that will reduce complexity and improve the continuing capability of the software. Object oriented software metric can be classified in two types static and dynamic. Static metrics are concerned with all the aspects of measuring by static analysis of software and dynamic metrics are concerned with all the measuring aspect of the software at run time. Major work done before, was focusing on static metric. Also some work has been done in the field of dynamic nature of the software measurements. But research in this area is demanding for more work. In this paper we give a set of dynamic metrics specifically for polymorphism in object oriented system.

Sulfate Attack on Pastes Made with Different C3A and C4AF Contents and Stored at 5°C

In the present work the internal sulfate attack on pastes made from pure clinker phases was studied. Two binders were produced: (a) a binder with 2% C3A and 18% C4AF content; (b) a binder with 10% C3A and C4AF content each. Gypsum was used as the sulfate bearing compound, while calcium carbonate added to differentiate the binders produced. The phases formed were identified by XRD analysis. The results showed that ettringite was the deterioration phase detected in the case of the low C3A content binder. Carbonation occurred in the specimen without calcium carbonate addition, while portlandite was observed in the one containing calcium carbonate. In the case of the high C3A content binder, traces of thaumasite were detected when calcium carbonate was not incorporated in the binder. A solid solution of thaumasite and ettringite was found when calcium carbonate was added. The amount of C3A had not fully reacted with sulfates, since its corresponding peaks were detected.

Microwave Assisted Fast Synthesis of Flower-like ZnO Based Guanidinium Template for Photodegradation of Azo Dye Congo Red

ZnO nanostructure were synthesized via microwave method using zinc acetate as starting material, guanidinium as structure directing agents, and water as solvent.. This work investigates the photodegradation of azo dyes using the ZnO Flowerlike in aqueous solutions. As synthesized ZnO samples were characterized using X-Ray powder diffraction (XRD), scanning electron microscopy (SEM), and FTIR spectroscopy.In this work photodecolorization of congored azo dye under UV irradiation by nano ZnO was studied.

Using Exponential Lévy Models to Study Implied Volatility patterns for Electricity Options

German electricity European options on futures using Lévy processes for the underlying asset are examined. Implied volatility evolution, under each of the considered models, is discussed after calibrating for the Merton jump diffusion (MJD), variance gamma (VG), normal inverse Gaussian (NIG), Carr, Geman, Madan and Yor (CGMY) and the Black and Scholes (B&S) model. Implied volatility is examined for the entire sample period, revealing some curious features about market evolution, where data fitting performances of the five models are compared. It is shown that variance gamma processes provide relatively better results and that implied volatility shows significant differences through time, having increasingly evolved. Volatility changes for changed uncertainty, or else, increasing futures prices and there is evidence for the need to account for seasonality when modelling both electricity spot/futures prices and volatility.

Comparative Study of Two New Configurations of Solar Photovoltaic Thermal Collectors

Hybrid photovoltaic thermal (PV/T) solar system comprises a solar collector which is disposed on photovoltaic solar cells. The disadvantage of a conventional photovoltaic cell is that its performance decreases as the temperature increases. Indeed, part of the solar radiation is converted into electricity and is dissipated as heat, increasing the temperature of the photovoltaic cell with respect to the ambient temperature. The objective of this work is to study experimentally and implement a hybrid prototype to evaluate electrical and thermal performance. In this paper, an experimental study of two new configurations of hybrid collectors is exposed. The results are given and interpreted. The two configurations of absorber studied are a new combination with tubes and galvanized tank, the other is a tubes and sheet.

Low Power Approach for Decimation Filter Hardware Realization

There are multiple ways to implement a decimator filter. This paper addresses usage of CIC (cascaded-integrator-comb) filter and HB (half band) filter as the decimator filter to reduce the frequency sample rate by factor of 64 and detail of the implementation step to realize this design in hardware. Low power design approach for CIC filter and half band filter will be discussed. The filter design is implemented through MATLAB system modeling, ASIC (application specific integrated circuit) design flow and verified using a FPGA (field programmable gate array) board and MATLAB analysis.

Hospitals Disaster Preparedness during Arab Spring in Yemen

Objective: The objective of this paper is to assess the hospitals preparedness for emergency using WHO standards. Method: This is a cross-sectional study, consisted of site visit, questionnaire survey, 16 health facilities were included. The WHO standard for emergency preparedness of health facilities was used to evaluate and assess the hospitals preparedness of health facilities. Result: 13 hospitals were responded. They scored below average in all measure >75%), while above average score was in 7 out 9 nine measure with a range of 8%-25%. Un acceptable below average was noted in two measures only. Discussion: The biggest challenge facing the hospitals in their emergency intervention is the lack of pre-emergency and emergency preparedness plans as well as the coordination of the hospitals response mechanisms. Conclusion: The studied hospitals presently are far from international disasters preparedness protocols. That necessitates improvements in emergency preparedness, as well as in physician skills for injury management.

A New Method for Estimation of the Source Coherency Structure of Wideband Sources

Based on the sources- smoothed rank profile (SRP) and modified minimum description length (MMDL) principle, a method for estimation of the source coherency structure (SCS) and the number of wideband sources is proposed in this paper. Instead of focusing, we first use a spatial smoothing technique to pre-process the array covariance matrix of each frequency for de-correlating the sources and then use smoothed rank profile to determine the SCS and the number of wideband sources. We demonstrate the availability of the method by numerical simulations.

Computer Aided Docking Studies on Antiviral Drugs for SARS

Severe acute respiratory syndrome (SARS) is a respiratory disease in humans which is caused by the SARS coronavirus. The treatment of coronavirus-associated SARS has been evolving and so far there is no consensus on an optimal regimen. The mainstream therapeutic interventions for SARS involve broad-spectrum antibiotics and supportive care, as well as antiviral agents and immunomodulatory therapy. The Protein- Ligand interaction plays a significant role in structural based drug designing. In the present work we have taken the receptor Angiotensin converting enzyme 2 and identified the drugs that are commonly used against SARS. They are Lopinavir, Ritonavir, Ribavirin, and Oseltamivir. The receptor Angiotensin converting enzyme 2 (ACE-2) was docked with above said drugs and the energy value obtained are as follows, Lopinavir (-292.3), Ritonavir (-325.6), Oseltamivir (- 229.1), Ribavirin (-208.8). Depending on the least energy value we have chosen the best two drugs out of the four conventional drugs. We tried to improve the binding efficiency and steric compatibility of the two drugs namely Ritonavir and Lopinavir. Several modifications were made to the probable functional groups (phenylic, ketonic groups in case of Ritonavir and carboxylic groups in case of Lopinavir respectively) which were interacting with the receptor molecule. Analogs were prepared by Marvin Sketch software and were docked using HEX docking software. Lopinavir analog 8 and Ritonavir analog 11 were detected with significant energy values and are probable lead molecule. It infers that some of the modified drugs are better than the original drugs. Further work can be carried out to improve the steric compatibility of the drug based upon the work done above for a more energy efficient binding of the drugs to the receptor.

Validation and Application of a New Optimized RP-HPLC-Fluorescent Detection Method for Norfloxacin

A new reverse phase-high performance liquid chromatography (RP-HPLC) method with fluorescent detector (FLD) was developed and optimized for Norfloxacin determination in human plasma. Mobile phase specifications, extraction method and excitation and emission wavelengths were varied for optimization. HPLC system contained a reverse phase C18 (5 μm, 4.6 mm×150 mm) column with FLD operated at excitation 330 nm and emission 440 nm. The optimized mobile phase consisted of 14% acetonitrile in buffer solution. The aqueous phase was prepared by mixing 2g of citric acid, 2g sodium acetate and 1 ml of triethylamine in 1 L of Milli-Q water was run at a flow rate of 1.2 mL/min. The standard curve was linear for the range tested (0.156–20 μg/mL) and the coefficient of determination was 0.9978. Aceclofenac sodium was used as internal standard. A detection limit of 0.078 μg/mL was achieved. Run time was set at 10 minutes because retention time of norfloxacin was 0.99 min. which shows the rapidness of this method of analysis. The present assay showed good accuracy, precision and sensitivity for Norfloxacin determination in human plasma with a new internal standard and can be applied pharmacokinetic evaluation of Norfloxacin tablets after oral administration in human.

Cold Flow Investigation of Primary Zone Characteristics in Combustor Utilizing Axial Air Swirler

This paper presents a cold flow simulation study of a small gas turbine combustor performed using laboratory scale test rig. The main objective of this investigation is to obtain physical insight of the main vortex, responsible for the efficient mixing of fuel and air. Such models are necessary for predictions and optimization of real gas turbine combustors. Air swirler can control the combustor performance by assisting in the fuel-air mixing process and by producing recirculation region which can act as flame holders and influences residence time. Thus, proper selection of a swirler is needed to enhance combustor performance and to reduce NOx emissions. Three different axial air swirlers were used based on their vane angles i.e., 30°, 45°, and 60°. Three-dimensional, viscous, turbulent, isothermal flow characteristics of the combustor model operating at room temperature were simulated via Reynolds- Averaged Navier-Stokes (RANS) code. The model geometry has been created using solid model, and the meshing has been done using GAMBIT preprocessing package. Finally, the solution and analysis were carried out in a FLUENT solver. This serves to demonstrate the capability of the code for design and analysis of real combustor. The effects of swirlers and mass flow rate were examined. Details of the complex flow structure such as vortices and recirculation zones were obtained by the simulation model. The computational model predicts a major recirculation zone in the central region immediately downstream of the fuel nozzle and a second recirculation zone in the upstream corner of the combustion chamber. It is also shown that swirler angles changes have significant effects on the combustor flowfield as well as pressure losses.

Automata Theory Approach for Solving Frequent Pattern Discovery Problems

The various types of frequent pattern discovery problem, namely, the frequent itemset, sequence and graph mining problems are solved in different ways which are, however, in certain aspects similar. The main approach of discovering such patterns can be classified into two main classes, namely, in the class of the levelwise methods and in that of the database projection-based methods. The level-wise algorithms use in general clever indexing structures for discovering the patterns. In this paper a new approach is proposed for discovering frequent sequences and tree-like patterns efficiently that is based on the level-wise issue. Because the level-wise algorithms spend a lot of time for the subpattern testing problem, the new approach introduces the idea of using automaton theory to solve this problem.

Objects Extraction by Cooperating Optical Flow, Edge Detection and Region Growing Procedures

The image segmentation method described in this paper has been developed as a pre-processing stage to be used in methodologies and tools for video/image indexing and retrieval by content. This method solves the problem of whole objects extraction from background and it produces images of single complete objects from videos or photos. The extracted images are used for calculating the object visual features necessary for both indexing and retrieval processes. The segmentation algorithm is based on the cooperation among an optical flow evaluation method, edge detection and region growing procedures. The optical flow estimator belongs to the class of differential methods. It permits to detect motions ranging from a fraction of a pixel to a few pixels per frame, achieving good results in presence of noise without the need of a filtering pre-processing stage and includes a specialised model for moving object detection. The first task of the presented method exploits the cues from motion analysis for moving areas detection. Objects and background are then refined using respectively edge detection and seeded region growing procedures. All the tasks are iteratively performed until objects and background are completely resolved. The method has been applied to a variety of indoor and outdoor scenes where objects of different type and shape are represented on variously textured background.

Development of Molecular Imprinted Polymers (MIPs) for the Selective Removal of Carbamazepine from Aqueous Solution

The occurrence and removal of trace organic contaminants in the aquatic environment has become a focus of environmental concern. For the selective removal of carbamazepine from loaded waters molecularly imprinted polymers (MIPs) were synthesized with carbamazepine as template. Parameters varied were the type of monomer, crosslinker, and porogen, the ratio of starting materials, and the synthesis temperature. Best results were obtained with a template to crosslinker ratio of 1:20, toluene as porogen, and methacrylic acid (MAA) as monomer. MIPs were then capable to recover carbamazepine by 93% from a 10-5 M landfill leachate solution containing also caffeine and salicylic acid. By comparison, carbamazepine recoveries of 75% were achieved using a nonimprinted polymer (NIP) synthesized under the same conditions, but without template. In landfill leachate containing solutions carbamazepine was adsorbed by 93-96% compared with an uptake of 73% by activated carbon. The best solvent for desorption was acetonitrile, with which the amount of solvent necessary and dilution with water was tested. Selected MIPs were tested for their reusability and showed good results for at least five cycles. Adsorption isotherms were prepared with carbamazepine solutions in the concentration range of 0.01 M to 5*10-6 M. The heterogeneity index showed a more homogenous binding site distribution.

Comparative Finite Element Simulation of Nonlinear Vibrations and Sensor Output Voltage of Smart Piezolaminated Structures

Two geometrically nonlinear plate theories, based either on first- or third-order transverse shear deformation theory are used for finite element modeling and simulation of the transient response of smart structures incorporating piezoelectric layers. In particular the time histories of nonlinear vibrations and sensor voltage output of a thin beam with a piezoelectric patch bonded to the surface due to an applied step force are studied.