Studying the Effects of Economic and Financial Development as well as Institutional Quality on Environmental Destruction in the Upper-Middle Income Countries

The current study explored the effect of economic development, financial development and institutional quality on environmental destruction in upper-middle income countries during the time period of 1999-2011. The dependent variable is logarithm of carbon dioxide emissions that can be considered as an index for destruction or quality of the environment given to its effects on the environment. Financial development and institutional development variables as well as some control variables were considered. In order to study cross-sectional correlation among the countries under study, Pesaran and Friz test was used. Since the results of both tests show cross-sectional correlation in the countries under study, seemingly unrelated regression method was utilized for model estimation. The results disclosed that Kuznets’ environmental curve hypothesis is confirmed in upper-middle income countries and also, financial development and institutional quality have a significant effect on environmental quality. The results of this study can be considered by policy makers in countries with different income groups to have access to a growth accompanied by improved environmental quality.

Neighborhood Sustainability Assessment in the New Developments of Tabriz (Case Study: Roshdieh)

Since, today in most countries around the world much attention is paid to planning the smallest unit in the city i.e. the residential neighborhoods to achieve sustainable urban development goals, a variety of assessment tools have been developed to assess and monitor the sustainability of new developments. One of the most reliable and widely used assessment tools is LEED-ND rating system. This paper whit the aim of assessing sustainability level of Roshdieh neighborhood in Tabriz, has introduced this rating system and applied it in the study area. The results indicate that Roshdieh has the potential of achieving the standards of sustainable neighborhoods, but the present situation is far from the ideal point.

Trends in Extreme Rainfall Events in Tasmania, Australia

Climate change will affect various aspects of hydrological cycle such as rainfall. A change in rainfall will affect flood magnitude and frequency in future which will affect the design and operation of hydraulic structures. In this paper, trends in subhourly, sub-daily, and daily extreme rainfall events from 18 rainfall stations located in Tasmania, Australia are examined. Two nonparametric tests (Mann-Kendall and Spearman’s Rho) are applied to detect trends at 10%, 5%, and 1% significance levels. Sub-hourly (6, 12, 18, and 30 minutes) annual maximum rainfall events have been found to experience statistically significant upward trends at 10% level of significance. However, sub-daily durations (1 hour, 3 and 12 hours) exhibit decreasing trends and no trends exists for longer duration rainfall events (e.g. 24 and 72 hours). Some of the durations (e.g. 6 minutes and 6 hours) show similar results (with upward trends) for both the tests. For 12, 18, 60 minutes and 3 hours durations both the tests show similar downward trends. This finding has important implication for Tasmania in the design of urban infrastructure where shorter duration rainfall events are more relevant for smaller urban catchments such as parking lots, roof catchments and smaller sub-divisions.

Histopathological Effects of Trichodiniasis in Farmed Freshwater Rainbow trout, Oncorhynchus mykiss in West of Iran

The aim of present study was to monitor the presence of Trichodina sp. in Rainbow trout, Oncorhynchus mykiss collected from various fish farms in the western provinces of Iran during January, 2013- January, 2014. Out of 675 sampled fish 335, (49.16%) were infested with Trichodina. The highest prevalence was observed in the spring and winter followed by autumn and summer. In general, the intensity of infection was low except in cases where outbreaks of Trichodiniasis endangered the survival of fish in some ponds. In light infestation Trichodina is usually present on gills, fins and skin of apparently healthy fish. Clinical signs of Trichodiniasis only appear on fish with heavy infections and cases of moderate ones that are usually exposed to one or more stress factors including, rough handling during transportation from ponds, overcrowdness, malnutrition, high of free ammonia and low of oxygen concentration. Clinical signs of Trichodiniasis in sampled fish were sluggish movement, loss of appetite, black coloration, necrosis and ulcer on different parts of the body, detached scales and excessive accumulation of mucous in gill pouches. The most obvious histopathological changes in diseased fish were sloughing of the epidermal layer, aggregation of leucocytes and melanine-carrying cells (between the dermis and hypodermis) and proliferative changes including hyperplasia and hypertrophy of the epithelial lining cells of gill filaments which resulted in fusion of secondary lamellae. Control of Trichodiniasis, has been achieved by formalin bath treatment at a concentration of 250 ppm for one hour.

A Novel Design Methodology for a 1.5 KW DC/DC Converter in EV and Hybrid EV Applications

This paper presents a method for the efficient implementation of a unidirectional or bidirectional DC/DC converter. The DC/DC converter is used essentially for energy exchange between the low voltage service battery and a high voltage battery commonly found in Electric Vehicle applications. In these applications, apart from cost, efficiency of design is an important characteristic. A useful way to reduce the size of electronic equipment in the electric vehicles is proposed in this paper. The technique simplifies the mechanical complexity and maximizes the energy usage using the latest converter control techniques. Moreover a bidirectional battery charger for hybrid electric vehicles is also implemented in this paper. Several simulations on the test system have been carried out in Matlab/Simulink environment. The results exemplify the robustness of the proposed design methodology in case of a 1.5 KW DC-DC converter.

The Effects of Knowledge Management on Human Capital towards Organizational Innovation

The study was conducted to produce case studies from the Malaysian public universities stands point East Coast of Malaysia. The aim of this study is to analyze the effects of knowledge management on human capital toward organizational innovation. The focus point of this study is on the management member in the faculties of these three Malaysian Public Universities in the East Coast state of Peninsular Malaysia. In this case, respondents who agreed to further participate in the research will be invited to a one-hour face-to-face semi-structured, in-depth interview. As a result, the sample size for this study was 3 deans of Faculty of Management. Lastly, this study tries to recommend the framework of organizational innovation in Malaysian Public Universities.

Packet Reserving and Clogging Control via Routing Aware Packet Reserving Framework in MANET

In MANET, mobile nodes communicate with each other using the wireless channel where transmission takes place with significant interference. The wireless medium used in MANET is a shared resource used by all the nodes available in MANET. Packet reserving is one important resource management scheme which controls the allocation of bandwidth among multiple flows through node cooperation in MANET. This paper proposes packet reserving and clogging control via Routing Aware Packet Reserving (RAPR) framework in MANET. It mainly focuses the end-to-end routing condition with maximal throughput. RAPR is complimentary system where the packet reserving utilizes local routing information available in each node. Path setup in RAPR estimates the security level of the system, and symbolizes the end-to-end routing by controlling the clogging. RAPR reaches the packet to the destination with high probability ratio and minimal delay count. The standard performance measures such as network security level, communication overhead, end-to-end throughput, resource utilization efficiency and delay measure are considered in this work. The results reveals that the proposed packet reservation and clogging control via Routing Aware Packet Reserving (RAPR) framework performs well for the above said performance measures compare to the existing methods.

Stewardship of Urban Greenery in an Era of Global Urbanisation

Urban greenery remains the bastion of urban landscape and a key to sustainable development due to its integral connections to the general health and wellbeing of urban residents. However, in an era of rapid urbanisation, recent studies indicate that urban greenery, especially ecologically sensitive areas, in many African cities is becoming increasingly depleted. Given the scale and rate of natural and anthropogenic change, effective management of urban greenery as the ultimate goal of restoring depleting urban landscapes is urgent. This review advocates for an urban resilience model to managing urban greenery.

Solar Architecture of Low-Energy Buildings for Industrial Applications

This research focuses on the optimization of glazed surfaces and the assessment of possible solar gains in industrial buildings. Existing window rating methods for single windows were evaluated and a new method for a simple analysis of energy gains and losses by single windows was introduced. Furthermore extensive transient building simulations were carried out to appraise the performance of low cost polycarbonate multi-cell sheets in interaction with typical buildings for industrial applications. Mainly energy saving potential was determined by optimizing the orientation and area of such glazing systems in dependency on their thermal qualities. Moreover the impact on critical aspects such as summer overheating and daylight illumination was considered to ensure the user comfort and avoid additional energy demand for lighting or cooling. Hereby the simulated heating demand could be reduced by up to 1/3 compared to traditional architecture of industrial halls using mainly skylights.

Synthesis of New Bio-Based Solid Polymer Electrolyte Polyurethane-LiClO4 via Prepolymerization Method: Effect of NCO/OH Ratio on Their Chemical, Thermal Properties and Ionic Conductivity

Novel bio-based polymer electrolyte was synthesized with LiClO4 as the main source of charge carrier. Initially, polyurethane-LiClO4 polymer electrolytes were synthesized via prepolymerization method with different NCO/OH ratios and labelled them as PU1, PU2, PU3 and PU4. Fourier transform infrared (FTIR) analysis indicates the co-ordination between Li+ ion and polyurethane in PU1. Differential scanning calorimetry (DSC) analysis indicates PU1 has the highest glass transition temperature (Tg) corresponds to the most abundant urethane group which is the hard segment in PU1. Scanning electron microscopy (SEM) shows the good miscibility between lithium salt and the polymer. The study found that PU1 possessed the greatest ionic conductivity and the lowest activation energy, Ea. All the polyurethanes exhibited linear Arrhenius variations indicating ion transport via simple lithium ion hopping in polyurethane. This research proves the NCO content in polyurethane plays an important role in affecting the ionic conductivity of this polymer electrolyte.

Channel Estimation/Equalization with Adaptive Modulation and Coding over Multipath Faded Channels for WiMAX

Different order modulations combined with different coding schemes, allow sending more bits per symbol, thus achieving higher throughputs and better spectral efficiencies. However, it must also be noted that when using a modulation technique such as 64- QAM with less overhead bits, better signal-to-noise ratios (SNRs) are needed to overcome any Inter symbol Interference (ISI) and maintain a certain bit error ratio (BER). The use of adaptive modulation allows wireless technologies to yielding higher throughputs while also covering long distances. The aim of this paper is to implement an Adaptive Modulation and Coding (AMC) features of the WiMAX PHY in MATLAB and to analyze the performance of the system in different channel conditions (AWGN, Rayleigh and Rician fading channel) with channel estimation and blind equalization. Simulation results have demonstrated that the increment in modulation order causes to increment in throughput and BER values. These results derived a trade-off among modulation order, FFT length, throughput, BER value and spectral efficiency. The BER changes gradually for AWGN channel and arbitrarily for Rayleigh and Rician fade channels.

A New Method for Estimating the Mass Recession Rate for Ablator Systems

As the human race will continue to explore the space by creating new space transportation means and sending them to other planets, the enhance of atmospheric reentry study is crucial. In this context, an analysis of mass recession rate of ablative materials for thermal shields of reentry spacecrafts is important to be carried out. The paper describes a new estimation method for calculating the mass recession of an ablator system made of carbon fiber reinforced plastic materials. This method is based on Arrhenius equation for low temperatures and, for high temperatures, on a theory applied for the recession phenomenon of carbon fiber reinforced plastic materials, theory which takes into account the presence of the resin inside the materials. The space mission of USERS spacecraft is considered as a case study.

Raman Spectroscopy of Carbon Nanostructures in Strong Magnetic Field

One- and two-dimensional carbon nanostructures with sp2 hybridization of carbon atoms (single walled carbon nanotubes and graphene) are promising materials in future electronic and spintronics devices due to specific character of their electronic structure. In this paper we present a comparative study of graphene and single-wall carbon nanotubes by Raman spectro-microscopy in strong magnetic field. This unique method allows to study changes in electronic band structure of the two types of carbon nanostructures induced by a strong magnetic field.

Survival of Four Probiotic Strains in Acid, Bile Salt and After Spray Drying

The objective of the study was to select the survival of probiotic strains when exposed to acidic and bile salts condition. Four probiotic strains Lactobacillus casei subsp. rhamnosus TISTR 047, Lactobacillus casei TISTR 1500, Lactobacillus acidophilus TISTR 1338 and Lactobacillus plantarum TISTR 1465 were cultured in MRS broth and incubated at 35ºC for 15 hours before being inoculated into acidic condition 5 M HCl, pH 2 for 2 hours and bile salt 0.3%, pH 5.8 for 8 hour. The survived probiotics were counted in MRS agar. Among four stains, Lactobacillus casei subsp. rhamnosus TISTR 047 was the highest tolerance specie. Lactobacillus casei subsp. rhamnosus TISTR 047 reduced 6.74±0.07 log CFU/ml after growing in acid and 5.52±0.05 log CFU/ml after growing in bile salt. Then, double emulsion of microorganisms was chosen to encapsulate before spray drying. Spray drying was done with the inlet temperature 170ºC and outlet temperature 80ºC. The results showed that the survival of encapsulated Lactobacillus casei subsp. rhamnosus TISTR 047 after spray drying decreased from 9.63 ± 0.32 to 8.31 ± 0.11 log CFU/ml comparing with non-encapsulated, 9.63 ± 0.32 to 4.06 ± 0.08 log CFU/ml. Therefore, Lactobacillus casei subsp. rhamnosus TISTR 047 would be able to survive in gastrointestinal and spray drying condition.

Pulse Generator with Constant Pulse Width

This paper is about method to produce a stable and accurate constant output pulse width regardless of the amplitude, period and pulse width variation of the input signal source. The pulse generated is usually being used in numerous applications as the reference input source to other circuits in the system. Therefore, it is crucial to produce a clean and constant pulse width to make sure the system is working accurately as expected.

The Co-application of Plant Growth Promoting Rhizobacteria and Inoculation with Rhizobium Bacteria on Grain Yield and Its Components of Mungbean (Vigna radiate L.) in Ilam Province, Iran

In order to investigate the effect of Plant Growth Promoting Rhizobacteria (PGPR) and rhizobium bacteria on grain yield and some agronomic traits of mungbean (Vigna radiate L.), an experiment was carried out based on randomized complete block design with three replications in Malekshahi, Ilam province, Iran during 2012-2013 cropping season. Experimental treatments consisted of control treatment, inoculation with rhizobium bacteria, rhizobium bacteria and Azotobacter, rhizobium bacteria and Azospirillum, rhizobium bacteria and Pseudomonas, rhizobium bacteria, Azotobacter and Azospirillum, rhizobium bacteria, Azotobacter and Pseudomonas, rhizobium bacteria, Azospirillum and Pseudomonas and rhizobium bacteria, Azotobacter, Azospirillum and Pseudomonas. The results showed that the effect of PGPR and rhizobium bacteria were significant affect on grain and its components in mungbean plant. Grain yield significantly increased by PGPR and rhizobium bacteria, so that the maximum grain yield was obtained from rhizobium bacteria + Azospirillum + Pseudomonas with the amount of 2287 kg.ha-1 as compared to control treatment. Excessive application of chemical fertilizers causes environmental and economic problems. That is, the overfertilization of P and N leads to pollution due to soil erosion and runoff water, so the use of PGPR and rhizobium bacteria can be justified due to reduce input costs, increase in grain yield and environmental friendly.

Electroencephalography Based Brain-Computer Interface for Cerebellum Impaired Patients

In healthy humans, the cortical brain rhythm shows specific mu (~6-14 Hz) and beta (~18-24 Hz) band patterns in the cases of both real and imaginary motor movements. As cerebellar ataxia is associated with impairment of precise motor movement control as well as motor imagery, ataxia is an ideal model system in which to study the role of the cerebellocortical circuit in rhythm control. We hypothesize that the EEG characteristics of ataxic patients differ from those of controls during the performance of a Brain-Computer Interface (BCI) task. Ataxia and control subjects showed a similar distribution of mu power during cued relaxation. During cued motor imagery, however, the ataxia group showed significant spatial distribution of the response, while the control group showed the expected decrease in mu-band power (localized to the motor cortex).

Selecting the Best Sub-Region Indexing the Images in the Case of Weak Segmentation Based On Local Color Histograms

Color Histogram is considered as the oldest method used by CBIR systems for indexing images. In turn, the global histograms do not include the spatial information; this is why the other techniques coming later have attempted to encounter this limitation by involving the segmentation task as a preprocessing step. The weak segmentation is employed by the local histograms while other methods as CCV (Color Coherent Vector) are based on strong segmentation. The indexation based on local histograms consists of splitting the image into N overlapping blocks or sub-regions, and then the histogram of each block is computed. The dissimilarity between two images is reduced, as consequence, to compute the distance between the N local histograms of the both images resulting then in N*N values; generally, the lowest value is taken into account to rank images, that means that the lowest value is that which helps to designate which sub-region utilized to index images of the collection being asked. In this paper, we make under light the local histogram indexation method in the hope to compare the results obtained against those given by the global histogram. We address also another noteworthy issue when Relying on local histograms namely which value, among N*N values, to trust on when comparing images, in other words, which sub-region among the N*N sub-regions on which we base to index images. Based on the results achieved here, it seems that relying on the local histograms, which needs to pose an extra overhead on the system by involving another preprocessing step naming segmentation, does not necessary mean that it produces better results. In addition to that, we have proposed here some ideas to select the local histogram on which we rely on to encode the image rather than relying on the local histogram having lowest distance with the query histograms.

Attenuation of Pancreatic Histology, Hematology and Biochemical Parameters in Type 2 Diabetic Rats Treated with Azadirachta excelsa

Azadirachta excelsa or locally known as sentang are frequently used as a traditional medicine by diabetes patients in Malaysia. However, less attention has been given to their toxicity effect. Thus, the study is an attempt to examine the protective effect of A. excelsa on the pancreas and to determine possible toxicity mediated by the extract. Diabetes was induced experimentally in rats by high-fat-diet for 16 weeks followed by intraperitoneal injection of streptozotocin at dosage of 35 mg/kg of body weight. Declination of the fasting blood glucose level was observed after continuous administration of A. excelsa for 14 days twice daily. This is due to the refining structure of the pancreas. However, surprisingly, the plant extract reduced the leukocytes, erythrocytes, hemoglobin, MCHC and lymphocytes. In addition, the rat treated with the plant extract exhibited increment in AST and eosinocytes level. Overall, the finding shows that A. excelsa possesses antidiabetic activity by improving the structure of pancreatic islet of Langerhans but involved in ameliorating of hematology and biochemical parameters.

Kinetic Parameters for Bioethanol Production from Oil Palm Trunk Juice

Abundant and cheap agricultural waste of oil palm trunk (OPT) juice was used to produce bioethanol. Two strains of Saccharomyces cerevisiae and a strain of Pichia stipitis were used to produce bioethanol from the OPT juice. Fermentation was conducted at previously optimized condition at 30oC and without shaking. The kinetic parameters were estimated and calculated. Monod equation and Hinshelwood model is used to relate the specific growth to the concentration of the limiting substrate and also to simulate bioethanol production rate. Among the three strains, single S. cerevisiae Kyokai no. 7 produce the highest ethanol yield of 0.477 g/l.h within the shortest time (12 h). This yeast also produces more than 20 g/l ethanol concentration within 10 h of fermentation.