Using New Technologies for Public Parking in Isfahan City

Cities expansion, urban travels increase, the technology development, the automobile price cheapen, and the families' income ascending cause the considerable increase in automobile numbers of the city. This fact has led to the traffic creation and the automobile parking site shortage in the city. Also in Esfahan metropolis, the parking lots shortage has been the great problem of this town; in addition, in designing and constructing of the parking sites the traditional methods are utilized which do not have a reasonable and optimized usage of the valuable urban lands. In this article, by introducing the prefabricate mechanized parking system which is inexpensive, simple and quick, and occupies very small space, therefore provides the high content of parking site for the cities, we can eliminate the parking space shortage difficulty of the cities. The achieved results of this research represent that an optimized utilization of the existent urban spaces for parking site construction has not been accomplished. By employing the new parking site technologies such as mechanization categorized parking sites and the capacity prefabricate mechanized of each parking space have become 8 multiples; in this case, the valuable urban lands can be used in an optimized way.

LumaCert: Conception and Creation of New Digital Certificate for Online User Authentication in e-Banking Systems

Electronic banking must be secure and easy to use and many banks heavily advertise an apparent of 100% secure system which is contestable in many points. In this work, an alternative approach to the design of e-banking system, through a new solution for user authentication and security with digital certificate called LumaCert is introduced. The certificate applies new algorithm for asymmetric encryption by utilizing two mathematical operators called Pentors and UltraPentors. The public and private key in this algorithm represent a quadruple of parameters which are directly dependent from the above mentioned operators. The strength of the algorithm resides in the inability to find the respective Pentor and UltraPentor operator from the mentioned parameters.

Autonomous Control of a Mobile Manipulator

This paper considers the design of a motion planner that will simultaneously accomplish control and motion planning of a n-link nonholonomic mobile manipulator, wherein, a n-link holonomic manipulator is coupled with a nonholonomic mobile platform, within an obstacle-ridden environment. This planner, derived from the Lyapunov-based control scheme, generates collision-free trajectories from an initial configuration to a final configuration in a constrained environment cluttered with stationary solid objects of different shapes and sizes. We demonstrate the efficiency of the control scheme and the resulting acceleration controllers of the mobile manipulator with results through computer simulations of an interesting scenario.

Design a Low Voltage- Low Offset Class AB Op-Amp

A new design approach for three-stage operational amplifiers (op-amps) is proposed. It allows to actually implement a symmetrical push-pull class-AB amplifier output stage for wellestablished three-stage amplifiers using a feedforward transconductance stage. Compared with the conventional design practice, the proposed approach leads to a significant improvement of the symmetry between the positive and the negative op-amp step response, resulting in similar values of the positive/negative settling time. The new approach proves to be very useful in order to fully exploit the potentiality allowed by the op-amp in terms of speed performances. Design examples in a commercial 0.35-μm CMOS prove the effectiveness of theproposed strategy.

Analysis and Design Business Directory for Micro, Small and Medium Enterprises using Google Maps API and Multimedia

This paper explain about analysis and design a business directory for micro-scale businesses, small and medium enterprises (SMEs). Business Directory, if implemented will facilitate and optimize the access of SMEs to ease suppliers access to marketing. Business Directory will be equipped with the power of geocoding, so each location can be easily viewed SMEs on the map. The map will be constructed by using the functionality of a webbased Google Maps API. The information presented in the form of multimedia that can be more interesting and interactive. The method used to achieve the goal are: observation; interviews; modeling and classifying business directory for SMEs.

Recent Advances on Computational Proteomics

In this work we report the recent progresses that have been achieved by our group in the last half decade on the field of computational proteomics. Specifically, we discuss the application of Molecular Dynamics Simulations and Electronic Structure Calculations in drug design, in the clarification of the structural and dynamic properties of proteins and enzymes and in the understanding of the catalytic and inhibition mechanism of cancer-related enzymes. A set of examples illustrate the concepts and help to introduce the reader into this important and fast moving field.

Extraction and Analysis of Hypericum perforatum L. from Turkey

Hypericum perforatum L. is a member of the Hypericaceae (Guttiferae) family and commonly known as St. John’s wort. There is a growing interest in this medicinal plant because of the constituents of this genus. A number of species have been shown to possess various biological activities such as antiviral, wound healing, analgesic, hepatoprotective, antimicrobial and antioxidant activities and also have therapeutic effects on burns, bruises, swelling, anxiety and mild to moderate depression. In this study, the aerial parts of Hypericum perforatum L. are extracted and the main and effective constituents are determined. The analysis of the extracts was performed by GC-MS and LC-MS. As a next step, it is aimed to investigate the usage of the main constituents of the medicinal plant.

Microwave Dehydration Behavior of Admontite Mineral at 360W

Dehydration behavior gives a hint about thermal properties of materials. It is important for the usage areas and transportation of minerals. Magnesium borates can be used as additive materials in areas such as in the production of superconducting materials, in the composition of detergents, due to the content of boron in the friction-reducing additives in oils and insulating coating compositions due to their good mechanic and thermal properties. In this study, thermal dehydration behavior of admontite (MgO(B2O3)3.7(H2O)), which is a kind of magnesium borate mineral, is experimented by microwave energy at 360W. Structure of admontite is suitable for the investigation of dehydration behavior by microwave because of its seven moles of crystal water. It is seen that admontite lost its 28.7% of weight at the end of the 120 minutes heating in microwave furnace. 

The Effect of Saturates on Rheological and Aging Characteristics of Bitumen

According to Rostler method (ASTM D 2006), saturates content of bitumen is determined based on its reactivity to sulphuric acid. While Corbett method (ASTM D 4124) based on its polarity level. This paper presents results from the study on the effect of saturates content determined by two different fractionation methods on the rheological and aging characteristics of bitumen. The result indicated that the increment of saturates content tended to reduce all the rheological characteristics concerned. Bitumen became less elastic, less viscous, and less resistant to plastic deformation, but became more resistant to fatigue cracking. After short and long term aging process, the treatment effect coefficients of saturates decreased, saturates became thicker due to aging process. This study concludes that saturates is not really stable or reactive in aging process. Therefore, the reactivity of saturates should be considered in bitumen aging index

Simulating and Forecasting Qualitative Marcoeconomic Models Using Rule-Based Fuzzy Cognitive Maps

Economic models are complex dynamic systems with a lot of uncertainties and fuzzy data. Conventional modeling approaches using well known methods and techniques cannot provide realistic and satisfactory answers to today-s challenging economic problems. Qualitative modeling using fuzzy logic and intelligent system theories can be used to model macroeconomic models. Fuzzy Cognitive maps (FCM) is a new method been used to model the dynamic behavior of complex systems. For the first time FCMs and the Mamdani Model of Intelligent control is used to model macroeconomic models. This new model is referred as the Mamdani Rule-Based Fuzzy Cognitive Map (MBFCM) and provides the academic and research community with a new promising integrated advanced computational model. A new economic model is developed for a qualitative approach to Macroeconomic modeling. Fuzzy Controllers for such models are designed. Simulation results for an economic scenario are provided and extensively discussed

New Design Constraints of FIR Filter on Magnitude and Phase of Error Function

Exchange algorithm with constraints on magnitude and phase error separately in new way is presented in this paper. An important feature of the algorithms presented in this paper is that they allow for design constraints which often arise in practical filter design problems. Meeting required minimum stopband attenuation or a maximum deviation from the desired magnitude and phase responses in the passbands are common design constraints that can be handled by the methods proposed here. This new algorithm may have important advantages over existing technique, with respect to the speed and stability of convergence, memory requirement and low ripples.

Design Analysis of a Slotted Microstrip Antenna for Wireless Communication

In this paper, a new design technique for enhancing bandwidth that improves the performance of a conventional microstrip patch antenna is proposed. This paper presents a novel wideband probe fed inverted slotted microstrip patch antenna. The design adopts contemporary techniques; coaxial probe feeding, inverted patch structure and slotted patch. The composite effect of integrating these techniques and by introducing the proposed patch, offer a low profile, broadband, high gain, and low cross-polarization level. The results for the VSWR, gain and co-and cross-polarization patterns are presented. The antenna operating the band of 1.80-2.36 GHz shows an impedance bandwidth (2:1 VSWR) of 27% and a gain of 10.18 dBi with a gain variation of 1.12 dBi. Good radiation characteristics, including a cross-polarization level in xz-plane less than -42 dB, have been obtained.

The Effect of Waste Magnesium to Boric Acid Ratio in Hydrothermal Magnesium Borate Synthesis at 70oC

Magnesium wastes are produced by many industrial activities. This waste problem is becoming a future problem for the world. Magnesium borates have many advantages such as; high corrosion resistance, heat resistance, high coefficient of elasticity and can also be used in the production of material against radiation. Addition, magnesium borates have great potential in sectors including ceramic and detergents industry and superconducting materials. In this study, using the starting materials of waste magnesium and H3BO3 the hydrothermal method was applied at a moderate temperature of 70oC. Several mole ratios of waste magnesium to H3BO3 are selected as; 1:2, 1:4, 1:6, 1:8, 1:10. Reaction time was determined as 1 hour. After the synthesis, X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques are applied to products. As a result the forms of mcallisterite “Mg2(B6O7(OH)6)2.9(H2O)”, admontite “MgO(B2O3)3.7(H2O)” and magnesium boron hydrate (MgO(B2O3)3.6(H2O)” are obtained. 

Comparison of Proportional Control and Fuzzy Logic Control to Develop an Ideal Thermoelectric Renal Hypothermia System

In this study, a comparison of two control methods, Proportional Control (PC) and Fuzzy Logic Control (FLC), which have been used to develop an ideal thermoelectric renal hypothermia system in order to use in renal surgery, has been carried out. Since the most important issues in long-lasting parenchymatous renal surgery are to provide an operation medium free of blood and to prevent renal dysfunction in the postoperative period, control of the temperature has become very important in renal surgery. The final product is seriously affected from the changes in temperature, therefore, it is necessary to reach some desired temperature points quickly and avoid large overshoot. PIC16F877 microcontroller has been used as controller for both of these two methods. Each control method can simply ensure extra renal hypothermia in the targeted way. But investigation of advantages and disadvantages of every control method to each other is aimed and carried out by the experimental implementations. Shortly, investigation of the most appropriate method to use for development of system and that can be applied to people safely in the future, has been performed. In this sense, experimental results show that fuzzy logic control gives out more reliable responses and efficient performance.

Aspect Oriented Software Architecture

Natural language processing systems pose a unique challenge for software architectural design as system complexity has increased continually and systems cannot be easily constructed from loosely coupled modules. Lexical, syntactic, semantic, and pragmatic aspects of linguistic information are tightly coupled in a manner that requires separation of concerns in a special way in design, implementation and maintenance. An aspect oriented software architecture is proposed in this paper after critically reviewing relevant architectural issues. For the purpose of this paper, the syntactic aspect is characterized by an augmented context-free grammar. The semantic aspect is composed of multiple perspectives including denotational, operational, axiomatic and case frame approaches. Case frame semantics matured in India from deep thematic analysis. It is argued that lexical, syntactic, semantic and pragmatic aspects work together in a mutually dependent way and their synergy is best represented in the aspect oriented approach. The software architecture is presented with an augmented Unified Modeling Language.

Mechanism of Damping in Welded Structures using Finite Element Approach

The characterization and modeling of the dynamic behavior of many built-up structures under vibration conditions is still a subject of current research. The present study emphasizes the theoretical investigation of slip damping in layered and jointed welded cantilever structures using finite element approach. Application of finite element method in damping analysis is relatively recent, as such, some problems particularly slip damping analysis has not received enough attention. To validate the finite element model developed, experiments have been conducted on a number of mild steel specimens under different initial conditions of vibration. Finite element model developed affirms that the damping capacity of such structures is influenced by a number of vital parameters such as; pressure distribution, kinematic coefficient of friction and micro-slip at the interfaces, amplitude, frequency of vibration, length and thickness of the specimen. Finite element model developed can be utilized effectively in the design of machine tools, automobiles, aerodynamic and space structures, frames and machine members for enhancing their damping capacity.

Global Kinetics of Direct Dimethyl Ether Synthesis Process from Syngas in Slurry Reactor over a Novel Cu-Zn-Al-Zr Slurry Catalyst

The direct synthesis process of dimethyl ether (DME) from syngas in slurry reactors is considered to be promising because of its advantages in caloric transfer. In this paper, the influences of operating conditions (temperature, pressure and weight hourly space velocity) on the conversion of CO, selectivity of DME and methanol were studied in a stirred autoclave over Cu-Zn-Al-Zr slurry catalyst, which is far more suitable to liquid phase dimethyl ether synthesis process than bifunctional catalyst commercially. A Langmuir- Hinshelwood mechanism type global kinetics model for liquid phase DME direct synthesis based on methanol synthesis models and a methanol dehydration model has been investigated by fitting our experimental data. The model parameters were estimated with MATLAB program based on general Genetic Algorithms and Levenberg-Marquardt method, which is suitably fitting experimental data and its reliability was verified by statistical test and residual error analysis.

A Study on the Introduction of Wastewater Reuse Facility in Military Barracks by Cost-Benefit Analysis

The international society focuses on the environment protection and natural energy sources control for the global cooperation against weather change and sustainable growth. The study presents the overview of the water shortage status and the necessity of wastewater reuse facility in military facilities and for the possibility of the introduction, compares the economics by means of cost-benefit analysis. The military features such as the number of users of military barracks and the water use were surveyed by the design principles by facility types, the application method of wastewater reuse facility was selected, the feed water, its application and the volume of reuse volume were defined and the expectation was estimated, confirming the possibility of introducing a wastewater reuse possibility by means of cost-benefit analysis.

Analysis and Classification of Hiv-1 Sub- Type Viruses by AR Model through Artificial Neural Networks

HIV-1 genome is highly heterogeneous. Due to this variation, features of HIV-I genome is in a wide range. For this reason, the ability to infection of the virus changes depending on different chemokine receptors. From this point of view, R5 HIV viruses use CCR5 coreceptor while X4 viruses use CXCR5 and R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the experiments on HIV-1 genome. In this study, R5X4 type of HIV viruses were classified using Auto Regressive (AR) model through Artificial Neural Networks (ANNs). The statistical data of R5X4, R5 and X4 viruses was analyzed by using signal processing methods and ANNs. Accessible residues of these virus sequences were obtained and modeled by AR model since the dimension of residues is large and different from each other. Finally the pre-processed data was used to evolve various ANN structures for determining R5X4 viruses. Furthermore ROC analysis was applied to ANNs to show their real performances. The results indicate that R5X4 viruses successfully classified with high sensitivity and specificity values training and testing ROC analysis for RBF, which gives the best performance among ANN structures.

M-band Wavelet and Cosine Transform Based Watermark Algorithm Using Randomization and Principal Component Analysis

Computational techniques derived from digital image processing are playing a significant role in the security and digital copyrights of multimedia and visual arts. This technology has the effect within the domain of computers. This research presents discrete M-band wavelet transform (MWT) and cosine transform (DCT) based watermarking algorithm by incorporating the principal component analysis (PCA). The proposed algorithm is expected to achieve higher perceptual transparency. Specifically, the developed watermarking scheme can successfully resist common signal processing, such as geometric distortions, and Gaussian noise. In addition, the proposed algorithm can be parameterized, thus resulting in more security. To meet these requirements, the image is transformed by a combination of MWT & DCT. In order to improve the security further, we randomize the watermark image to create three code books. During the watermark embedding, PCA is applied to the coefficients in approximation sub-band. Finally, first few component bands represent an excellent domain for inserting the watermark.