Proposal for Cost Calculation of Warehouse Processes and Its Usage for Setting Standards for Performance Evaluation

This paper describes a proposal for cost calculation of warehouse processes and its usage for setting standards for performance evaluation. One of the most common options of monitoring process performance is benchmarking. The typical outcome is whether the monitored object is better or worse than an average or standard. Traditional approaches, however, cannot find any specific opportunities to improve performance or eliminate inefficiencies in processes. Higher process efficiency can be achieved for example by cost reduction assuming that the same output is generated. However, costs can be reduced only if we know their structure and we are able to calculate them accurately. In the warehouse process area it is rather difficult because in most cases we have available only aggregated values with low explanatory ability. The aim of this paper is to create a suitable method for calculating the storage costs. At the end is shown a practical example of process calculation.

Closed Loop Control of Bridgeless Cuk Converter Using Fuzzy Logic Controller for PFC Applications

This paper is based on the bridgeless single-phase Ac–Dc Power Factor Correction (PFC) converters with Fuzzy Logic Controller. High frequency isolated Cuk converters are used as a modular dc-dc converter in Discontinuous Conduction Mode (DCM) of operation of Power Factor Correction. The aim of this paper is to simplify the program complexity of the controller by reducing the number of fuzzy sets of the Membership Functions (MFs) and to improve the efficiency and to eliminate the power quality problems. The output of Fuzzy controller is compared with High frequency triangular wave to generate PWM gating signals of Cuk converter. The proposed topologies are designed to work in Discontinuous Conduction Mode (DCM) to achieve a unity power factor and low total harmonic distortion of the input current. The Fuzzy Logic Controller gives additional advantages such as accurate result, uncertainty and imprecision and automatic control circuitry. Performance comparisons between the proposed and conventional controllers and circuits are performed based on circuit simulations.

Hyperspectral Mapping Methods for Differentiating Mangrove Species along Karachi Coast

It is necessary to monitor and identify mangroves types and spatial extent near coastal areas because it plays an important role in coastal ecosystem and environmental protection. This research aims at identifying and mapping mangroves types along Karachi coast ranging from 24.790 to 24.850 in latitude and 66.910 to 66.970 in longitude using hyperspectral remote sensing data and techniques. Image acquired during February, 2012 through Hyperion sensor have been used for this research. Image pre processing includes geometric and radiometric correction followed by Minimum Noise Fraction (MNF) and Pixel Purity Index (PPI). The output of MNF and PPI has been analyzed by visualizing it in n-dimensions for end member extraction. Well distributed clusters on the n-dimensional scatter plot have been selected with the region of interest (ROI) tool as end members. These end members have been used as an input for classification techniques applied to identify and map mangroves species including Spectral Angle Mapper (SAM), Spectral Feature Fitting (SFF) and Spectral Information Diversion (SID). Only two types of mangroves namely Avicennia Marina (White Mangroves) and Avicennia germinans (Black Mangroves) have been observed throughout the study area.

Supply Air Pressure Control of HVAC System Using MPC Controller

In this paper, supply air pressure of HVAC system has been modeled with second-order transfer function plus dead-time. In HVAC system, the desired input has step changes, and the output of proposed control system should be able to follow the input reference, so the idea of using model based predictive control is proceeded and designed in this paper. The closed loop control system is implemented in MATLAB software and the simulation results are provided. The simulation results show that the model based predictive control is able to control the plant properly.

Selection of an Optimum Configuration of Solar PV Array under Partial Shaded Condition Using Particle Swarm Optimization

This paper presents an extraction of maximum energy from Solar Photovoltaic Array (SPVA) under partial shaded conditions by optimum selection of array size using Particle Swarm Optimization (PSO) technique. In this paper a detailed study on the output reduction of different SPVA configurations under partial shaded conditions have been carried out. A generalized MATLAB M-code based software model has been used for any required array size, configuration, shading patterns and number of bypass diodes. Comparative study has been carried out on different configurations by testing several shading scenarios. While the number of shading patterns and the rate of change are very low for stationary SPVA but these may be quite large for SPVA mounted on a mobile platforms. This paper presents the suitability of PSO technique to select optimum configuration for mobile arrays by calculating the global peak (GP) of different configurations and to transfer maximum power to the load.

Artificial Intelligent Approach for Machining Titanium Alloy in a Nonconventional Process

Artificial neural networks (ANN) are used in distinct researching fields and professions, and are prepared by cooperation of scientists in different fields such as computer engineering, electronic, structure, biology and so many different branches of science. Many models are built correlating the parameters and the outputs in electrical discharge machining (EDM) concern for different types of materials. Up till now model for Ti-5Al-2.5Sn alloy in the case of electrical discharge machining performance characteristics has not been developed. Therefore, in the present work, it is attempted to generate a model of material removal rate (MRR) for Ti-5Al-2.5Sn material by means of Artificial Neural Network. The experimentation is performed according to the design of experiment (DOE) of response surface methodology (RSM). To generate the DOE four parameters such as peak current, pulse on time, pulse off time and servo voltage and one output as MRR are considered. Ti-5Al-2.5Sn alloy is machined with positive polarity of copper electrode. Finally the developed model is tested with confirmation test. The confirmation test yields an error as within the agreeable limit. To investigate the effect of the parameters on performance sensitivity analysis is also carried out which reveals that the peak current having more effect on EDM performance.

Life Estimation of Induction Motor Insulation under Non-Sinusoidal Voltage and Current Waveforms Using Fuzzy Logic

Thyristor based firing angle controlled voltage regulators are extensively used for speed control of single phase induction motors. This leads to power saving but the applied voltage and current waveforms become non-sinusoidal. These non-sinusoidal waveforms increase voltage and thermal stresses which result into accelerated insulation aging, thus reducing the motor life. Life models that allow predicting the capability of insulation under such multi-stress situations tend to be very complex and somewhat impractical. This paper presents the fuzzy logic application to investigate the synergic effect of voltage and thermal stresses on intrinsic aging of induction motor insulation. A fuzzy expert system is developed to estimate the life of induction motor insulation under multiple stresses. Three insulation degradation parameters, viz. peak modification factor, wave shape modification factor and thermal loss are experimentally obtained for different firing angles. Fuzzy expert system consists of fuzzyfication of the insulation degradation parameters, algorithms based on inverse power law to estimate the life and defuzzyficaton process to output the life. An electro-thermal life model is developed from the results of fuzzy expert system. This fuzzy logic based electro-thermal life model can be used for life estimation of induction motors operated with non-sinusoidal voltage and current waveforms.

Robust & Energy Efficient Universal Gates for High Performance Computer Networks at 22nm Process Technology

Digital systems are said to be constructed using basic logic gates. These gates are the NOR, NAND, AND, OR, EXOR & EXNOR gates. This paper presents a robust three transistors (3T) based NAND and NOR gates with precise output logic levels, yet maintaining equivalent performance than the existing logic structures. This new set of 3T logic gates are based on CMOS inverter and Pass Transistor Logic (PTL). The new universal logic gates are characterized by better speed and lower power dissipation which can be straightforwardly fabricated as memory ICs for high performance computer networks. The simulation tests were performed using standard BPTM 22nm process technology using SYNOPSYS HSPICE. The 3T NAND gate is evaluated using C17 benchmark circuit and 3T NOR is gate evaluated using a D-Latch. According to HSPICE simulation in 22 nm CMOS BPTM process technology under given conditions and at room temperature, the proposed 3T gates shows an improvement of 88% less power consumption on an average over conventional CMOS logic gates. The devices designed with 3T gates will make longer battery life by ensuring extremely low power consumption.

WEMax: Virtual Manned Assembly Line Generation

Presented in this paper is a framework of a software ‘WEMax’. The WEMax is invented for analysis and simulation for manned assembly lines to sustain and improve performance of manufacturing systems. In a manufacturing system, performance, such as productivity, is a key of competitiveness for output products. However, the manned assembly lines are difficult to forecast performance, because human labors are not expectable factors by computer simulation models or mathematical models. Existing approaches to performance forecasting of the manned assembly lines are limited to matters of the human itself, such as ergonomic and workload design, and non-human-factor-relevant simulation. Consequently, an approach for the forecasting and improvement of manned assembly line performance is needed to research. As a solution of the current problem, this study proposes a framework that is for generation and simulation of virtual manned assembly lines, and the framework has been implemented as a software.

Opinion Mining Framework in the Education Domain

The internet is growing larger and becoming the most popular platform for the people to share their opinion in different interests. We choose the education domain specifically comparing some Malaysian universities against each other. This comparison produces benchmark based on different criteria shared by the online users in various online resources including Twitter, Facebook and web pages. The comparison is accomplished using opinion mining framework to extract, process the unstructured text and classify the result to positive, negative or neutral (polarity). Hence, we divide our framework to three main stages; opinion collection (extraction), unstructured text processing and polarity classification. The extraction stage includes web crawling, HTML parsing, Sentence segmentation for punctuation classification, Part of Speech (POS) tagging, the second stage processes the unstructured text with stemming and stop words removal and finally prepare the raw text for classification using Named Entity Recognition (NER). Last phase is to classify the polarity and present overall result for the comparison among the Malaysian universities. The final result is useful for those who are interested to study in Malaysia, in which our final output declares clear winners based on the public opinions all over the web.

Design of PI and Fuzzy Controller for High-Efficiency and Tightly Regulated Full Bridge DC-DC Converter

The controller is used to improve the dynamic performance of DC-DC converter by achieving a robust output voltage against load disturbances. This paper presents the performance of PI and Fuzzy controller for a phase- shifted zero-voltage switched full-bridge PWM (ZVS FB- PWM) converters with a closed loop control. The proposed converter is regulated with minimum overshoot and good stability. In this paper phase-shift control method is used as an effective tool to reduce switching losses and duty cycle losses. A 1kW/100KHz dc/dc converter is simulated and analyzed using MATLAB. The circuit is simulated for static and dynamic load (DC motor). It has been observed that performance of converter with fuzzy controller is better than that of PI controller. An efficiency comparison of the converter with a reported topology has also been carried out.

Influence of Loudness Compression on Hearing with Bone Anchored Hearing Implants

Bone Anchored Hearing Implants (BAHI) are  routinely used in patients with conductive or mixed hearing loss, e.g.  if conventional air conduction hearing aids cannot be used. New  sound processors and new fitting software now allow the adjustment  of parameters such as loudness compression ratios or maximum  power output separately. Today it is unclear, how the choice of these  parameters influences aided speech understanding in BAHI users.  In this prospective experimental study, the effect of varying the  compression ratio and lowering the maximum power output in a  BAHI were investigated.  Twelve experienced adult subjects with a mixed hearing loss  participated in this study. Four different compression ratios (1.0; 1.3;  1.6; 2.0) were tested along with two different maximum power output  settings, resulting in a total of eight different programs. Each  participant tested each program during two weeks. A blinded Latin  square design was used to minimize bias.  For each of the eight programs, speech understanding in quiet and  in noise was assessed. For speech in quiet, the Freiburg number test  and the Freiburg monosyllabic word test at 50, 65, and 80 dB SPL  were used. For speech in noise, the Oldenburg sentence test was  administered.  Speech understanding in quiet and in noise was improved  significantly in the aided condition in any program, when compared  to the unaided condition. However, no significant differences were  found between any of the eight programs. In contrast, on a subjective  level there was a significant preference for medium compression  ratios of 1.3 to 1.6 and higher maximum power output.  

Performance Analysis of Wavelet Based Multiuser MIMO OFDM

Wavelet analysis has some strong advantages over Fourier analysis, as it allows a time-frequency domain analysis, allowing optimal resolution and flexibility. As a result, they have been satisfactorily applied in almost all the fields of communication systems including OFDM which is a strong candidate for next generation of wireless technology. In this paper, the performances of wavelet based Multiuser Multiple Input and Multiple Output Orthogonal Frequency Division Multiplexing (MU-MIMO OFDM) systems are analyzed in terms of BER. It has been shown that the wavelet based systems outperform the classical FFT based systems. This analysis also unfolds an interesting result, where wavelet based OFDM system will have a constant error performance using Regularized Channel Inversion (RCI) beamforming for any number of users, and outperforms in all possible scenario in a multiuser environment. An extensive computer simulations show that a PAPR reduction of up to 6.8dB can be obtained with M=64.

Leakage Reduction ONOFIC Approach for Deep Submicron VLSI Circuits Design

Minimizations of power dissipation, chip area with higher circuit performance are the necessary and key parameters in deep submicron regime. The leakage current increases sharply in deep submicron regime and directly affected the power dissipation of the logic circuits. In deep submicron region the power dissipation as well as high performance is the crucial concern since increasing importance of portable systems. Number of leakage reduction techniques employed to reduce the leakage current in deep submicron region but they have some trade-off to control the leakage current. ONOFIC approach gives an excellent agreement between power dissipation and propagation delay for designing the efficient CMOS logic circuits. In this article ONOFIC approach is compared with LECTOR technique and output results show that ONOFIC approach significantly reduces the power dissipation and enhance the speed of the logic circuits. The lower power delay product is the big outcome of this approach and makes it an influential leakage reduction technique.

Design of a Novel Inclination Sensor Utilizing Grayscale Image

Several research works have been done in recent times utilizing grayscale image for the measurement of many physical phenomena. In this present paper, we have designed an embedded based inclination sensor utilizing the grayscale image with a resolution of 0.3º. The sensor module consists of a circular shaped metal disc, laminated with grayscale image and an optical transreceiver. The sensor principle is based on temporal changes in light intensity by the movement of grayscale image with the inclination of the target surface and the variation of light intensity has been detected in terms of voltage by the signal processing circuit (SPC).The output of SPC is fed to a microcontroller program to display the inclination angel digitally. The experimental results are shown a satisfactory performance of the sensor in a small inclination measuring range of -40º to + 40º with a sensitivity of 62 mV/°.

Variable Rate Superorthogonal Turbo Code with the OVSF Code Tree

When using modern Code Division Multiple Access (CDMA) in mobile communications, the user must be able to vary the transmission rate of users to allocate bandwidth efficiently. In this work, Orthogonal Variable Spreading Factor (OVSF) codes are used with the same principles applied in a low-rate superorthogonal turbo code due to their variable-length properties. The introduced system is the Variable Rate Superorthogonal Turbo Code (VRSTC) where puncturing is not performed on the encoder’s final output but rather before selecting the output to achieve higher rates. Due to bandwidth expansion, the codes outperform an ordinary turbo code in the AWGN channel. Simulations results show decreased performance compared to those obtained with the employment of Walsh-Hadamard codes. However, with OVSF codes, the VRSTC system keeps the orthogonality of codewords whilst producing variable rate codes contrary to Walsh-Hadamard codes where puncturing is usually performed on the final output.

Linear Programming Application in Unit Commitment of Wind Farms with Considering Uncertainties

Due to uncertainty of wind velocity, wind power generators don’t have deterministic output power. Utilizing wind power generation and thermal power plants together create new concerns for operation engineers of power systems. In this paper, a model is presented to implement the uncertainty of load and generated wind power which can be utilized in power system operation planning. Stochastic behavior of parameters is simulated by generating scenarios that can be solved by deterministic method. A mixed-integer linear programming method is used for solving deterministic generation scheduling problem. The proposed approach is applied to a 12-unit test system including 10 thermal units and 2 wind farms. The results show affectivity of piecewise linear model in unit commitment problems. Also using linear programming causes a considerable reduction in calculation times and guarantees convergence to the global optimum. Neglecting the uncertainty of wind velocity causes higher cost assessment of generation scheduling.

Current-Mode Resistorless SIMO Universal Filter and Four-Phase Quadrature Oscillator

In this paper, a new CMOS current-mode single input and multi-outputs (SIMO) universal filter and quadrature oscillator with a similar circuit are proposed. The circuits only consist of three Current differencing transconductance amplifiers (CDTA) and two grounded capacitors, which are resistorless, and they are suitable for monolithic integration. The universal filter uses minimum CDTAs and passive elements to realize SIMO type low-pass (LP), high-pass (HP), band-pass (BP) band-stop (BS) and all-pass (AP) filter functions simultaneously without any component matching conditions. The angular frequency (ω0) and the quality factor (Q) of the proposed filter can be electronically controlled and tuned orthogonal. By some modifications of the filter, a new current-mode four-phase quadrature oscillator (QO) can be obtained easily. The condition of oscillation (CO) and frequency of oscillation (FO) of the QO can be controlled electronically and independently through the bias current of the CDTAs, and it is suitable for variable frequency oscillator. Moreover, all the passive and active sensitivities of the circuits are low. SPICE simulation results are included to confirm the theory.

Solar Cell Degradation by Electron Irradiation Effect of Irradiation Fluence

Solar cells used in orbit are exposed to radiation environment mainly protons and high energy electrons. These particles degrade the output parameters of the solar cell. The aim of this work is to characterize the effects of electron irradiation fluence on the J (V) characteristic and output parameters of GaAs solar cell by numerical simulation. The results obtained demonstrate that the electron irradiation-induced degradation of performances of the cells concerns mainly the short circuit current

Computer Aided Diagnosis of Polycystic Kidney Disease Using ANN

Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multilayered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Further, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.