Damage Evaluation of Curved Steel Bridges Upgraded with Isolation Bearings and Unseating Prevention Cable Restrainers

This paper investigates the effectiveness of the use of seismic isolation devices on the overall 3D seismic response of curved highway viaducts with an emphasis on expansion joints. Furthermore, an evaluation of the effectiveness of the use of cable restrainers is presented. For this purpose, the bridge seismic performance has been evaluated on four different radii of curvature, considering two cases: restrained and unrestrained curved viaducts. Depending on the radius of curvature, three-dimensional non-linear dynamic analysis shows the vulnerability of curved viaducts to pounding and deck unseating damage. In this study, the efficiency of using LRB supports combined with cable restrainers on curved viaducts is demonstrated, not only by reducing in all cases the possible damage, but also by providing a similar behavior in the viaducts despite of curvature radius.

Pathogenetic Mechanism of Alcohol's Effect on Academic Performance

The regulatory competence of blood glucose homeostasis might determine the degree of academic performance. The aim of this study was to produce a model of students' alcohol use based on glucose homeostasis control and cognitive functions that might define the pathogenetic mechanism of alcohol's effect on academic performance. The study took six hours and thirty minutes on fasting, involving thirteen male students. Disturbances in cognitive functions, precisely a decrease in the effectiveness of active attention and a faster development of fatigue after four to six hours of mental work in alcohol users, compared to abstainers was statistically proven. These disturbances in alcohol users were retained even after seven to ten days of moderate alcohol use and might be the reason for the low academic performances among students who use alcoholic beverages.

Exploration of the Communication Area of Infrared Short-Range Communication Systems for Intervehicle Communication

Infrared communication in the wavelength band 780- 950 nm is very suitable for short-range point-to-point communications. It is a good choice for vehicle-to-vehicle communication in several intelligent-transportation-system (ITS) applications such as cooperative driving, collision warning, and pileup-crash prevention. In this paper, with the aid of a physical model established in our previous works, we explore the communication area of an infrared intervehicle communication system utilizing a typical low-cost cormmercial lightemitting diodes (LEDs) as the emitter and planar p-i-n photodiodes as the receiver. The radiation pattern of the emitter fabricated by aforementioned LEDs and the receiving pattern of the receiver are approximated by a linear combination of cosinen functions. This approximation helps us analyze the system performance easily. Both multilane straight-road conditions and curved-road conditions with various radius of curvature are taken into account. The condition of a small car communicating with a big truck, i.e., there is a vertical mounting height difference between the emitter and the receiver, is also considered. Our results show that the performance of the system meets the requirement of aforementioned ITS applications in terms of the communication area.

Linguistic, Pragmatic and Evolutionary Factors in Wason Selection Task

In two studies we tested the hypothesis that the appropriate linguistic formulation of a deontic rule – i.e. the formulation which clarifies the monadic nature of deontic operators - should produce more correct responses than the conditional formulation in Wason selection task. We tested this assumption by presenting a prescription rule and a prohibition rule in conditional vs. proper deontic formulation. We contrasted this hypothesis with two other hypotheses derived from social contract theory and relevance theory. According to the first theory, a deontic rule expressed in terms of cost-benefit should elicit a cheater detection module, sensible to mental states attributions and thus able to discriminate intentional rule violations from accidental rule violations. We tested this prevision by distinguishing the two types of violations. According to relevance theory, performance in selection task should improve by increasing cognitive effect and decreasing cognitive effort. We tested this prevision by focusing experimental instructions on the rule vs. the action covered by the rule. In study 1, in which 480 undergraduates participated, we tested these predictions through a 2 x 2 x 2 x 2 (type of the rule x rule formulation x type of violation x experimental instructions) between-subjects design. In study 2 – carried out by means of a 2 x 2 (rule formulation x type of violation) between-subjects design - we retested the hypothesis of rule formulation vs. the cheaterdetection hypothesis through a new version of selection task in which intentional vs. accidental rule violations were better discriminated. 240 undergraduates participated in this study. Results corroborate our hypothesis and challenge the contrasting assumptions. However, they show that the conditional formulation of deontic rules produces a lower performance than what is reported in literature.

Power Quality Improvement Using PI and Fuzzy Logic Controllers Based Shunt Active Filter

In recent years the large scale use of the power electronic equipment has led to an increase of harmonics in the power system. The harmonics results into a poor power quality and have great adverse economical impact on the utilities and customers. Current harmonics are one of the most common power quality problems and are usually resolved by using shunt active filter (SHAF). The main objective of this work is to develop PI and Fuzzy logic controllers (FLC) to analyze the performance of Shunt Active Filter for mitigating current harmonics under balanced and unbalanced sinusoidal source voltage conditions for normal load and increased load. When the supply voltages are ideal (balanced), both PI and FLC are converging to the same compensation characteristics. However, the supply voltages are non-ideal (unbalanced), FLC offers outstanding results. Simulation results validate the superiority of FLC with triangular membership function over the PI controller.

A Reconfigurable Distributed Multiagent System Optimized for Scalability

This paper proposes a novel solution for optimizing the size and communication overhead of a distributed multiagent system without compromising the performance. The proposed approach addresses the challenges of scalability especially when the multiagent system is large. A modified spectral clustering technique is used to partition a large network into logically related clusters. Agents are assigned to monitor dedicated clusters rather than monitor each device or node. The proposed scalable multiagent system is implemented using JADE (Java Agent Development Environment) for a large power system. The performance of the proposed topologyindependent decentralized multiagent system and the scalable multiagent system is compared by comprehensively simulating different fault scenarios. The time taken for reconfiguration, the overall computational complexity, and the communication overhead incurred are computed. The results of these simulations show that the proposed scalable multiagent system uses fewer agents efficiently, makes faster decisions to reconfigure when a fault occurs, and incurs significantly less communication overhead.

Performance Comparison of Parallel Sorting Algorithms on the Cluster of Workstations

Sorting appears the most attention among all computational tasks over the past years because sorted data is at the heart of many computations. Sorting is of additional importance to parallel computing because of its close relation to the task of routing data among processes, which is an essential part of many parallel algorithms. Many parallel sorting algorithms have been investigated for a variety of parallel computer architectures. In this paper, three parallel sorting algorithms have been implemented and compared in terms of their overall execution time. The algorithms implemented are the odd-even transposition sort, parallel merge sort and parallel rank sort. Cluster of Workstations or Windows Compute Cluster has been used to compare the algorithms implemented. The C# programming language is used to develop the sorting algorithms. The MPI (Message Passing Interface) library has been selected to establish the communication and synchronization between processors. The time complexity for each parallel sorting algorithm will also be mentioned and analyzed.

Ezilla Cloud Service with Cassandra Database for Sensor Observation System

The main mission of Ezilla is to provide a friendly interface to access the virtual machine and quickly deploy the high performance computing environment. Ezilla has been developed by Pervasive Computing Team at National Center for High-performance Computing (NCHC). Ezilla integrates the Cloud middleware, virtualization technology, and Web-based Operating System (WebOS) to form a virtual computer in distributed computing environment. In order to upgrade the dataset and speedup, we proposed the sensor observation system to deal with a huge amount of data in the Cassandra database. The sensor observation system is based on the Ezilla to store sensor raw data into distributed database. We adopt the Ezilla Cloud service to create virtual machines and login into virtual machine to deploy the sensor observation system. Integrating the sensor observation system with Ezilla is to quickly deploy experiment environment and access a huge amount of data with distributed database that support the replication mechanism to protect the data security.

Signal-to-Noise Ratio Improvement of EMCCD Cameras

Over the past years, the EMCCD has had a profound influence on photon starved imaging applications relying on its unique multiplication register based on the impact ionization effect in the silicon. High signal-to-noise ratio (SNR) means high image quality. Thus, SNR improvement is important for the EMCCD. This work analyzes the SNR performance of an EMCCD with gain off and on. In each mode, simplified SNR models are established for different integration times. The SNR curves are divided into readout noise (or CIC) region and shot noise region by integration time. Theoretical SNR values comparing long frame integration and frame adding in each region are presented and discussed to figure out which method is more effective. In order to further improve the SNR performance, pixel binning is introduced into the EMCCD. The results show that pixel binning does obviously improve the SNR performance, but at the expensive of the spatial resolution.

Closed Form Optimal Solution of a Tuned Liquid Column Damper Responding to Earthquake

In this paper the vibration behaviors of a structure equipped with a tuned liquid column damper (TLCD) under a harmonic type of earthquake loading are studied. However, due to inherent nonlinear liquid damping, it is no doubt that a great deal of computational effort is required to search the optimum parameters of the TLCD, numerically. Therefore by linearization the equation of motion of the single degree of freedom structure equipped with the TLCD, the closed form solutions of the TLCD-structure system are derived. To find the reliability of the analytical method, the results have been compared with other researcher and have good agreement. Further, the effects of optimal design parameters such as length ratio and mass ratio on the performance of the TLCD for controlling the responses of a structure are investigated by using the harmonic type of earthquake excitation. Finally, the Citicorp Center which has a very flexible structure is used as an example to illustrate the design procedure for the TLCD under the earthquake excitation.

High Capacity Spread-Spectrum Watermarking for Telemedicine Applications

This paper presents a new spread-spectrum watermarking algorithm for digital images in discrete wavelet transform (DWT) domain. The algorithm is applied for embedding watermarks like patient identification /source identification or doctors signature in binary image format into host digital radiological image for potential telemedicine applications. Performance of the algorithm is analysed by varying the gain factor, subband decomposition levels, and size of watermark. Simulation results show that the proposed method achieves higher watermarking capacity.

Neuro-Fuzzy Network Based On Extended Kalman Filtering for Financial Time Series

The neural network's performance can be measured by efficiency and accuracy. The major disadvantages of neural network approach are that the generalization capability of neural networks is often significantly low, and it may take a very long time to tune the weights in the net to generate an accurate model for a highly complex and nonlinear systems. This paper presents a novel Neuro-fuzzy architecture based on Extended Kalman filter. To test the performance and applicability of the proposed neuro-fuzzy model, simulation study of nonlinear complex dynamic system is carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction of financial time series. A benchmark case studie is used to demonstrate that the proposed model is a superior neuro-fuzzy modeling technique.

A Real-Time Rendering based on Efficient Updating of Static Objects Buffer

Real-time 3D applications have to guarantee interactive rendering speed. There is a restriction for the number of polygons which is rendered due to performance of a graphics hardware or graphics algorithms. Generally, the rendering performance will be drastically increased when handling only the dynamic 3d models, which is much fewer than the static ones. Since shapes and colors of the static objects don-t change when the viewing direction is fixed, the information can be reused. We render huge amounts of polygon those cannot handled by conventional rendering techniques in real-time by using a static object image and merging it with rendering result of the dynamic objects. The performance must be decreased as a consequence of updating the static object image including removing an static object that starts to move, re-rending the other static objects being overlapped by the moving ones. Based on visibility of the object beginning to move, we can skip the updating process. As a result, we enhance rendering performance and reduce differences of rendering speed between each frame. Proposed method renders total 200,000,000 polygons that consist of 500,000 dynamic polygons and the rest are static polygons in about 100 frames per second.

Design, Implementation and Testing of Mobile Agent Protection Mechanism for MANETS

In the current research, we present an operation framework and protection mechanism to facilitate secure environment to protect mobile agents against tampering. The system depends on the presence of an authentication authority. The advantage of the proposed system is that security measures is an integral part of the design, thus common security retrofitting problems do not arise. This is due to the presence of AlGamal encryption mechanism to protect its confidential content and any collected data by the agent from the visited host . So that eavesdropping on information from the agent is no longer possible to reveal any confidential information. Also the inherent security constraints within the framework allow the system to operate as an intrusion detection system for any mobile agent environment. The mechanism is tested for most of the well known severe attacks against agents and networked systems. The scheme proved a promising performance that makes it very much recommended for the types of transactions that needs highly secure environments, e. g., business to business.

Thermal Performance Analysis of Nanofluids in Microchannel Heat Sinks

In the present study, the pressure drop and laminar convection heat transfer characteristics of nanofluids in microchannel heat sink with square duct are numerically investigated. The water based nanofluids created with Al2O3 and CuO particles in four different volume fractions of 0%, 0.5%, 1%, 1.5% and 2% are used to analyze their effects on heat transfer and the pressure drop. Under the laminar, steady-state flow conditions, the finite volume method is used to solve the governing equations of heat transfer. Mixture Model is considered to simulate the nanofluid flow. For verification of used numerical method, the results obtained from numerical calculations were compared with the results in literature for both pure water and the nanofluids in different volume fractions. The distributions of the particles in base fluid are assumed to be uniform. The results are evaluated in terms of Nusselt number, the pressure drop and heat transfer enhancement. Analysis shows that the nanofluids enhance heat transfer while the Reynolds number and the volume fractions are increasing. The best overall enhancement was obtained at φ=%2 and Re=100 for CuO-water nanofluid.

Motion Recognition Based On Fuzzy WP Feature Extraction Approach

This paper is concerned with motion recognition based fuzzy WP(Wavelet Packet) feature extraction approach from Vicon physical data sets. For this purpose, we use an efficient fuzzy mutual-information-based WP transform for feature extraction. This method estimates the required mutual information using a novel approach based on fuzzy membership function. The physical action data set includes 10 normal and 10 aggressive physical actions that measure the human activity. The data have been collected from 10 subjects using the Vicon 3D tracker. The experiments consist of running, seating, and walking as physical activity motion among various activities. The experimental results revealed that the presented feature extraction approach showed good recognition performance.

Preliminary Evaluation of Different Water Qualities on Leucaena Leucocephala Seed Germination and Seedling Growth

The evaluation of non-conventional water resources on seed germination and seedling growth performance at early growth stages is still in progress especially in forage crops. This study was designed to test the effect of four types of water qualities (treated wastewater (TWW), industrial water (IW), grey water (GW), and Distilled water (DW)) on germination and early seedling vigor of Leucaena leucocephala. The results showed that the germination was not significantly affected by the different water qualities. Seed germination reached maximum after 17, 14, 14, and 21 days under GW, IW, TWW, and DW treatments, respectively. The highest mean of shoot length was scored under the GW treatment. And, the highest mean of root length was scored under DW which was not significant from GW treatment. The means of shoot fresh was the highest under the TWW. The means of root fresh weight was not significantly different from each other's under different treatments. The growth performance was in progress with no mortality during 21 days of growth. Thus, the best non-conventional water qualities alternatives based on the cleanness, nutrients, and toxicity are the GW, TWW and IW, respectively.

Evaluation of Performance Requirements for Seismic Design of Piping System

The cost of damage to the non-structural systems in critical facilities like nuclear power plants and hospitals can exceed 80% of the total cost of damage during an earthquake. The failure of nonstructural components, especially, piping systems led to leakage of water and subsequent shut-down of hospitals immediately after the event. Consequently, the evaluation of performance of these types of structural configurations has become necessary to mitigate the risk and to achieve reliable designs. This paper focuses on a methodology to evaluate the static and dynamic characteristics of complex actual piping system based on NFPA-13 and SMACNA guidelines. The result of this study revealed that current piping system subjected to design lateral force and design spectrum based on UBC-97 was failed in both cases and mode shapes between piping system and building structure were very different

Design of a Low Power Compensated 90nm RF Multiplier with Improved Isolation Characteristics for a Transmitted Reference Receiver Front End

In this paper, a double balanced radio frequency multiplier is presented which is customized for transmitted reference ultra wideband (UWB) receivers. The multiplier uses 90nm model parameters and exploits compensating transistors to provide controllable gain for a Gilbert core. After performing periodic and quasiperiodic non linear analyses the RF mixer (multiplier) achieves a voltage conversion gain of 16 dB and a DSB noise figure of 8.253 dB with very low power consumption. A high degree of LO to RF isolation (in the range of -94dB), RF to IF isolation (in the range of -95dB) and LO to IF isolation (in the range of -143dB) is expected for this design with an input-referred IP3 point of -1.93 dBm and an input referred 1 dB compression point of -10.67dBm. The amount of noise at the output is 7.7 nV/√Hz when the LO input is driven by a 10dBm signal. The mixer manifests better results when compared with other reported multiplier circuits and its Zero-IF performance ensures its applicability as TR-UWB multipliers.

Design of EDFA Gain Controller based on Disturbance Observer Technique

Based on a theoretical erbium-doped fiber amplifier (EDFA) model, we have proposed an application of disturbance observer(DOB) with proportional/integral/differential(PID) controller to EDFA for minimizing gain-transient time of wavelength -division-multiplexing (WDM) multi channels in optical amplifier in channel add/drop networks. We have dramatically reduced the gain-transient time to less than 30μsec by applying DOB with PID controller to the control of amplifier gain. The proposed DOB-based gain control algorithm for EDFA was implemented as a digital control system using TI's DSP(TMS320C28346) chip and experimental results of the system verify the excellent performance of the proposed gain control methodology.