Detection of Salmonella in Egg Shell and Egg Content from Different Housing Systems for Laying Hens

Polymerase chain reaction (PCR) assay and conventional microbiological methods were used to detect bacterial contamination of egg shells and egg content in different commercial housing systems, open house system and evaporative cooling system. A PCR assay was developed for direct detection using a set of primers specific for the invasion by A gene (invA) of Salmonella spp. PCR detected the presence of Salmonella in 2 samples of shell egg from the evaporative cooling system, while conventional cultural methods detected no Salmonella from the same samples.

On the Standardizing the Metal Die of Punchand Matrix by Mechanical Desktop Software

In industry, on of the most important subjects is die and it's characteristics in which for cutting and forming different mechanical pieces, various punch and matrix metal die are used. whereas the common parts which form the main frame die are not often proportion with pieces and dies therefore using a part as socalled common part for frames in specified dimension ranges can decrease the time of designing, occupied space of warehouse and manufacturing costs. Parts in dies with getting uniform in their shape and dimension make common parts of dies. Common parts of punch and matrix metal die are as bolster, guide bush, guide pillar and shank. In this paper the common parts and effective parameters in selecting each of them as the primary information are studied, afterward for selection and design of mechanical parts an introduction and investigation based on the Mech. Desk. software is done hence with developing this software can standardize the metal common parts of punch and matrix. These studies will be so useful for designer in their designing and also using it has with very much advantage for manufactures of products in decreasing occupied spaces by dies.

Application of Nano Cutting Fluid under Minimum Quantity Lubrication (MQL) Technique to Improve Grinding of Ti – 6Al – 4V Alloy

Minimum Quantity Lubrication (MQL) technique obtained a significant attention in machining processes to reduce environmental loads caused by usage of conventional cutting fluids. Recently nanofluids are finding an extensive application in the field of mechanical engineering because of their superior lubrication and heat dissipation characteristics. This paper investigates the use of a nanofluid under MQL mode to improve grinding characteristics of Ti-6Al-4V alloy. Taguchi-s experimental design technique has been used in the present investigation and a second order model has been established to predict grinding forces and surface roughness. Different concentrations of water based Al2O3 nanofluids were applied in the grinding operation through MQL setup developed in house and the results have been compared with those of conventional coolant and pure water. Experimental results showed that grinding forces reduced significantly when nano cutting fluid was used even at low concentration of the nano particles and surface finish has been found to improve with higher concentration of the nano particles.

Design of Smart Energy Monitoring System for Green IT Life

This paper describes the smart energy monitoring system with a wireless sensor network for monitoring of electrical usage in smart house. Proposed system is composed of wireless plugs and energy control wallpad server. The wireless plug integrates an AC power socket, a relay to switch the socket ON/OFF, a Hall effect sensor to sense current of load appliance and a Kmote. The Kmote is a wireless communication interface based on TinyOS. We evaluated wireless plug in a laboratory, analyzed and presented energy consumption data from electrical appliances for 3 months in home.

Impacts of the Courtyard with Glazed Roof on House Winter Thermal Conditions

The 'wind-rain' house has a courtyard with glazed roof, which allows more direct sunlight to come into indoor spaces during the winter. The glazed roof can be partially opened or closed and automatically controlled to provide natural ventilation in order to adjust for indoor thermal conditions and the roof area can be shaded by reflective insulation materials during the summer. Two field studies for evaluating indoor thermal conditions of the two 'windrain' houses have been carried out by author in 2009 and 2010. Indoor and outdoor air temperature and relative humidity adjacent to floor and ceiling of the two sample houses were continuously tested at 15-minute intervals, 24 hours a day during the winter months. Based on field study data, this study investigates relationships between building design and indoor thermal condition of the 'windrain' house to improve the future house design for building thermal comfort and energy efficiency

A Previously Underappreciated Impact on Global Warming caused by the Geometrical and Physical Properties of desert sand

The previous researches focused on the influence of anthropogenic greenhouse gases exerting global warming, but not consider whether desert sand may warm the planet, this could be improved by accounting for sand's physical and geometric properties. Here we show, sand particles (because of their geometry) at the desert surface form an extended surface of up to 1 + π/4 times the planar area of the desert that can contact sunlight, and at shallow depths of the desert form another extended surface of at least 1 + π times the planar area that can contact air. Based on this feature, an enhanced heat exchange system between sunlight, desert sand, and air in the spaces between sand particles could be built up automatically, which can increase capture of solar energy, leading to rapid heating of the sand particles, and then the heating of sand particles will dramatically heat the air between sand particles. The thermodynamics of deserts may thus have contributed to global warming, especially significant to future global warming if the current desertification continues to expand.

Factors Affecting the e-Business Adoption among the Home-Based Businesses (HBBs) in Malaysia

Research in e-Business has been growing tremendously covering all related aspects such as adoption issues, e- Business models, strategies, etc. This research aims to explore the potential of adopting e-Business for a micro size business operating from home called home-based businesses (HBBs). In Malaysia, the HBB industry started many years ago and were mostly monopolized by women or housewives managed as a part-time job to support their family economy. Today, things have changed. The availability of the Internet technology and the emergence of e-Business concept promote the evolution of HBBs, which have been adopted as another alternative as a professional career for women without neglecting their family needs especially the children. Although this study is confined to a limited sample size and within geographical biasness, the findings show that it concurs with previous large scale studies. In this study, both qualitative and quantitative methods were used and data were gathered using triangulation methods via interview, direct observation, document analysis and survey questionnaires. This paper discusses the literature review, research methods and findings pertaining to e-Business adoption factors that influence the HBBs in Malaysia.

Empirical Study of Real Retail Trade Turnover

This paper deals with econometric analysis of real retail trade turnover. It is a part of an extensive scientific research about modern trends in Croatian national economy. At the end of the period of transition economy, Croatia confronts with challenges and problems of high consumption society. In such environment as crucial economic variables: real retail trade turnover, average monthly real wages and household loans are chosen for consequence analysis. For the purpose of complete procedure of multiple econometric analysis data base adjustment has been provided. Namely, it has been necessary to deflate original national statistics data of retail trade turnover using consumer price indices, as well as provide process of seasonally adjustment of its contemporary behavior. In model establishment it has been necessary to involve the overcoming procedure for the autocorrelation and colinearity problems. Moreover, for case of time-series shift a specific appropriate econometric instrument has been applied. It would be emphasize that the whole methodology procedure is based on the real Croatian national economy time-series.

Thermomechanical Studies in Glass/Epoxy Composite Specimen during Tensile Loading

This paper presents the results of thermo-mechanical characterization of Glass/Epoxy composite specimens using Infrared Thermography technique. The specimens used for the study were fabricated in-house with three different lay-up sequences and tested on a servo hydraulic machine under uni-axial loading. Infrared Camera was used for on-line monitoring surface temperature changes of composite specimens during tensile deformation. Experimental results showed that thermomechanical characteristics of each type of specimens were distinct. Temperature was found to be decreasing linearly with increasing tensile stress in the elastic region due to thermo-elastic effect. Yield point could be observed by monitoring the change in temperature profile during tensile testing and this value could be correlated with the results obtained from stress-strain response. The extent of prior plastic deformation in the post-yield region influenced the slopes of temperature response during tensile loading. Partial unloading and reloading of specimens post-yield results in change in slope in elastic and plastic regions of composite specimens.

Salt-Tolerance of Tissue-Cultured Date Palm Cultivars under Controlled Environment

A study was conducted in greenhouse environment to determine the response of five tissue-cultured date palm cultivars, Al- Ahamad, Nabusaif, Barhee, Khalas, and Kasab to irrigation water salinity of 1.6, 5, 10, or 20 dS/ m. The salinity level of 1.6dS/m, was used as a control. The effects of high salinity on plant survival were manifested at 360 days after planting (DAP) onwards. Three cultivars, Khalas, Kasab and Barhee were able to tolerate 10 dS/m salinity level at 24 months after the start of study. Khalas tolerated the highest salinity level of 20 dS/ m and 'Nabusaif' was found to be the least tolerant cv. The average heights of palms and the number of fronds were decreased with increasing salinity levels as time progressed.

Distributional Impacts of Changes in Value Added Tax Rates in the Czech Republic

The paper evaluates the ongoing reform of VAT in the Czech Republic in terms of impacts on individual households. The main objective is to analyse the impact of given changes on individual households. The adopted method is based on the data related to household consumption by individual household quintiles; obtained data are subjected to micro-simulation examining. Results are discussed in terms of vertical tax justice. Results of the analysis reveal that VAT behaves regressively and a sole consolidation of rates at a higher level only increases the regression of this tax in the Czech Republic.

Methods for Analyzing the Energy Efficiencyand Cost Effectiveness of Evaporative Cooling Air Conditioning

Air conditioning systems of houses consume large quantity of electricity. To reducing energy consumption for air conditioning purposes it is becoming attractive the use of evaporative cooling air conditioning which is less energy consuming compared to air chillers. But, it is obvious that higher energy efficiency of evaporative cooling is not enough to judge whether evaporative cooling economically is competitive with other types of cooling systems. To proving the higher energy efficiency and cost effectiveness of the evaporative cooling competitive analysis of various types of cooling system should be accomplished. For noted purpose optimization mathematical model for each system should be composed based on system approach analysis. In this paper different types of evaporative cooling-heating systems are discussed and methods for increasing their energy efficiency and as well as determining of their design parameters are developed. The optimization mathematical models for each of them are composed with help of which least specific costs for each of them are reviled. The comparison of specific costs proved that the most efficient and cost effective is considered the “direct evaporating" system if it is applicable for given climatic conditions. Next more universal and applicable for many climatic conditions system providing least cost of heating and cooling is considered the “direct evaporating" system.

Evaluation of Risk Attributes Driven by Periodically Changing System Functionality

Modeling of the distributed systems allows us to represent the whole its functionality. The working system instance rarely fulfils the whole functionality represented by model; usually some parts of this functionality should be accessible periodically. The reporting system based on the Data Warehouse concept seams to be an intuitive example of the system that some of its functionality is required only from time to time. Analyzing an enterprise risk associated with the periodical change of the system functionality, we should consider not only the inaccessibility of the components (object) but also their functions (methods), and the impact of such a situation on the system functionality from the business point of view. In the paper we suggest that the risk attributes should be estimated from risk attributes specified at the requirements level (Use Case in the UML model) on the base of the information about the structure of the model (presented at other levels of the UML model). We argue that it is desirable to consider the influence of periodical changes in requirements on the enterprise risk estimation. Finally, the proposition of such a solution basing on the UML system model is presented.

Comparative Embodied Carbon Analysis of the Prefabrication Elements Compared with In-situ Elements in Residential Building Development of Hong Kong

This paper reviews the greenhouse gas emissions of prefabrication elements for residential development in Hong Kong. Prefabrication becomes a common practice in residential development in Hong Kong and is considered as a green approach. In Hong Kong, prefabrication took place at factories in Pearl River Delta. Although prefabrication reduces construction wastage, it might generate more greenhouse gas emission from transportation and manufacturing processes. This study attempts to measure the “cradle to site" greenhouse gas emission from prefabrication elements for a public housing development in Kai Tak area. The findings could help further reduction of greenhouse gas emissions through process improvement.

Optimal Generation Expansion Planning Strategy with Carbon Trading

Fossil fuel-firing power plants dominate electric power generation in Taiwan, which are also the major contributor to Green House gases (GHG). CO2 is the most important greenhouse gas that cause global warming. This paper penetrates the relationship between carbon trading for GHG reduction and power generation expansion planning (GEP) problem for the electrical utility. The Particle Swarm Optimization (PSO) Algorithm is presented to deal with the generation expansion planning strategy of the utility with independent power providers (IPPs). The utility has to take both the IPPs- participation and environment impact into account when a new generation unit is considering expanded from view of supply side.

Quantifying the Sustainable Building Criteria Based on Case Studies from Malaysia

In order to encourage the construction of green homes (GH) in Malaysia, a simple and attainable framework for designing and building GHs is needed. This can be achieved by aligning GH principles against Cole-s 'Sustainable Building Criteria' (SBC). This set of considerations was used to categorize the GH features of three case studies from Malaysia. Although the categorization of building features is useful at exploring the presence of sustainability inclinations of each house, the overall impact of building features in each of the five SBCs are unknown. Therefore, this paper explored the possibility of quantifying the impact of building features categorized in SBC1 – “Buildings will have to adapt to the new environment and restore damaged ecology while mitigating resource use" based on existing GH assessment tools and methods and other literature. This process as reported in this paper could lead to a new dimension in green home rating and assessment methods.

Plasmodium Vivax Malaria Transmission in a Network of Villages

Malaria is a serious, acute and chronic relapsing infection to humans. It is characterized by periodic attacks of chills, fever, nausea, vomiting, back pain, increased sweating anemia, splenomegaly (enlargement of the spleen) and often-fatal complications.The malaria disease is caused by the multiplication of protozoa parasite of the genus Plasmodium. Malaria in humans is due to 4 types of malaria parasites such that Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale. P.vivax malaria differs from P. falciparum malaria in that a person suffering from P. vivax malaria can experience relapses of the disease. Between the relapses, the malaria parasite will remain dormant in the liver of the patient, leading to the patient being classified as being in the dormant class. A mathematical model for the transmission of P. vivax is developed in which the human population is divided into four classes, the susceptible, the infected, the dormant and the recovered. In this paper, we formulate the dynamical model of P. vivax malaria to see the distribution of this disease at the district level.

Effects of Energy Consumption on Indoor Air Quality

Continuous measurements and multivariate methods are applied in researching the effects of energy consumption on indoor air quality (IAQ) in a Finnish one-family house. Measured data used in this study was collected continuously in a house in Kuopio, Eastern Finland, during fourteen months long period. Consumption parameters measured were the consumptions of district heat, electricity and water. Indoor parameters gathered were temperature, relative humidity (RH), the concentrations of carbon dioxide (CO2) and carbon monoxide (CO) and differential air pressure. In this study, self-organizing map (SOM) and Sammon's mapping were applied to resolve the effects of energy consumption on indoor air quality. Namely, the SOM was qualified as a suitable method having a property to summarize the multivariable dependencies into easily observable two-dimensional map. Accompanying that, the Sammon's mapping method was used to cluster pre-processed data to find similarities of the variables, expressing distances and groups in the data. The methods used were able to distinguish 7 different clusters characterizing indoor air quality and energy efficiency in the study house. The results indicate, that the cost implications in euros of heating and electricity energy vary according to the differential pressure, concentration of carbon dioxide, temperature and season.

Automatic Light Control in Domotics using Artificial Neural Networks

Home Automation is a field that, among other subjects, is concerned with the comfort, security and energy requirements of private homes. The configuration of automatic functions in this type of houses is not always simple to its inhabitants requiring the initial setup and regular adjustments. In this work, the ubiquitous computing system vision is used, where the users- action patterns are captured, recorded and used to create the contextawareness that allows the self-configuration of the home automation system. The system will try to free the users from setup adjustments as the home tries to adapt to its inhabitants- real habits. In this paper it is described a completely automated process to determine the light state and act on them, taking in account the users- daily habits. Artificial Neural Network (ANN) is used as a pattern recognition method, classifying for each moment the light state. The work presented uses data from a real house where a family is actually living.

Sustainable Architecture Analyses of Walls in Miyaneh Village Houses, Iran

Even though so many efforts have been taken to renovate and renew the architecture of Miyaneh villages in cold and dry regions of Iran-s northwest, these efforts failed due to lack of significant study and ignoring the past and sustainable history of those villages. Considering the overpopulation of Iran-s villages as well as the importance in preventing their immigration to cities, recognizing village architecture and its construction technology is of great significance to attain sustainable residence in villages. As the only vertical surface in the space, wall possesses its unique special characteristics, and it is also a very important architectural element able to provide the immunity and comfort space for the residents. This article analyzes the characteristics of this vertical element, main types of adobe and stone walls, locally constructed technologies, implementation, the elements forming the walls in the frame of village house typology of Miyaneh, which has the most villages in East Azerbaijan, based on sustainable architectural construction materials of walls.