Study on Various Measures for Flood in Specific Region: A Case Study of the 2008 Lao Flood

In recent years, the number of natural disasters in Laos has a trend to increase, especially the disaster of flood. To make a flood plan risk management in the future, it is necessary to understand and analyze the characteristics of the rainfall and Mekong River level data. To reduce the damage, this paper presents the flood risk analysis in Luangprabang and Vientiane, the prefecture of Laos. In detail, the relationship between the rainfall and the Mekong River level has evaluated and appropriate countermeasure for flood was discussed.

Speed Sensorless Control with a Linearizationby State Feedback of Asynchronous Machine Using a Model Reference Adaptive System

In this paper, we show that the association of the PI regulators for the speed and stator currents with a control strategy using the linearization by state feedback for an induction machine without speed sensor, and with an adaptation of the rotor resistance. The rotor speed is estimated by using the model reference adaptive system approach (MRAS). This method consists of using two models: The first is the reference model and the second is an adjustable one in which two components of the stator flux, obtained from the measurement of the currents and stator voltages are estimated. The estimated rotor speed is then obtained by canceling the difference between stator-flux of the reference model and those of the adjustable one. Satisfactory results of simulation are obtained and discussed in this paper to highlight the proposed approach.

Research on the Correlation of the Fluctuating Density Gradient of the Compressible Flows

This work is to study a roll of the fluctuating density gradient in the compressible flows for the computational fluid dynamics (CFD). A new anisotropy tensor with the fluctuating density gradient is introduced, and is used for an invariant modeling technique to model the turbulent density gradient correlation equation derived from the continuity equation. The modeling equation is decomposed into three groups: group proportional to the mean velocity, and that proportional to the mean strain rate, and that proportional to the mean density. The characteristics of the correlation in a wake are extracted from the results by the two dimensional direct simulation, and shows the strong correlation with the vorticity in the wake near the body. Thus, it can be concluded that the correlation of the density gradient is a significant parameter to describe the quick generation of the turbulent property in the compressible flows.

Intrusion Detection based on Distance Combination

The intrusion detection problem has been frequently studied, but intrusion detection methods are often based on a single point of view, which always limits the results. In this paper, we introduce a new intrusion detection model based on the combination of different current methods. First we use a notion of distance to unify the different methods. Second we combine these methods using the Pearson correlation coefficients, which measure the relationship between two methods, and we obtain a combined distance. If the combined distance is greater than a predetermined threshold, an intrusion is detected. We have implemented and tested the combination model with two different public data sets: the data set of masquerade detection collected by Schonlau & al., and the data set of program behaviors from the University of New Mexico. The results of the experiments prove that the combination model has better performances.

Convective Heat Transfer of Viscoelastic Flow in a Curved Duct

In this paper, fully developed flow and heat transfer of viscoelastic materials in curved ducts with square cross section under constant heat flux have been investigated. Here, staggered mesh is used as computational grids and flow and heat transfer parameters have been allocated in this mesh with marker and cell method. Numerical solution of governing equations has being performed with FTCS finite difference method. Furthermore, Criminale-Eriksen- Filbey (CEF) constitutive equation has being used as viscoelastic model. CEF constitutive equation is a suitable model for studying steady shear flow of viscoelastic materials which is able to model both effects of the first and second normal stress differences. Here, it is shown that the first and second normal stresses differences have noticeable and inverse effect on secondary flows intensity and mean Nusselt number which is the main novelty of current research.

A Study of Water Consumption in Two Malaysian Resorts

In the effort to reduce water consumption for resorts, more water conservation practices need to be implemented. Hence water audits need to be performed to obtain a baseline of water consumption, before planning water conservation practices. In this study, a water audit framework specifically for resorts was created, and the audit was performed on two resorts: Resort A in Langkawi, Malaysia; and Resort B in Miri, Malaysia. From the audit, the total daily water consumption for Resorts A and B were estimated to be 180m3 and 330 m3 respectively, while the actual water consumption (based on water meter readings) were 175 m3 and 325 m3. This suggests that the audit framework is reasonably accurate and may be used to account for most of the water consumption sources in a resort. The daily water consumption per guest is about 500 litres. The water consumption of both resorts is poorly rated compared with established benchmarks. Water conservation measures were suggested for both resorts.

Optimizing of Fuzzy C-Means Clustering Algorithm Using GA

Fuzzy C-means Clustering algorithm (FCM) is a method that is frequently used in pattern recognition. It has the advantage of giving good modeling results in many cases, although, it is not capable of specifying the number of clusters by itself. In FCM algorithm most researchers fix weighting exponent (m) to a conventional value of 2 which might not be the appropriate for all applications. Consequently, the main objective of this paper is to use the subtractive clustering algorithm to provide the optimal number of clusters needed by FCM algorithm by optimizing the parameters of the subtractive clustering algorithm by an iterative search approach and then to find an optimal weighting exponent (m) for the FCM algorithm. In order to get an optimal number of clusters, the iterative search approach is used to find the optimal single-output Sugenotype Fuzzy Inference System (FIS) model by optimizing the parameters of the subtractive clustering algorithm that give minimum least square error between the actual data and the Sugeno fuzzy model. Once the number of clusters is optimized, then two approaches are proposed to optimize the weighting exponent (m) in the FCM algorithm, namely, the iterative search approach and the genetic algorithms. The above mentioned approach is tested on the generated data from the original function and optimal fuzzy models are obtained with minimum error between the real data and the obtained fuzzy models.

Chips of Ti-6Al-2Sn-4Zr-6Mo Alloy – A Detailed Geometry Study

Titanium alloys like Ti-6Al-2Sn-4Zr-6Mo (Ti- 6246) are widely used in aerospace applications. Component manufacturing, however, is difficult and expensive as their machinability is extremely poor. A thorough understanding of the chip formation process is needed to improve related metal cutting operations.In the current study, orthogonal cutting experiments have been performed and theresulting chips were analyzed by optical microscopy and scanning electron microscopy.Chips from aTi- 6246ingot were produced at different cutting speeds and cutting depths. During the experiments, depending of the cutting conditions, continuous or segmented chips were formed. Narrow, highly deformed and grain oriented zones, the so-called shear zone, separated individual segments. Different material properties have been measured in the shear zones and the segments.

Identification Characterization and Production of Phytase from Endophytic Fungi

Phytases are acid phosphatase enzymes, which efficiently cleave phosphate moieties from phytic acid, thereby generating myo-inositol and inorganic phosphate. Thirty four isolates of endophytic fungi to produce of phytases were isolated from leaf, stem and root fragments of soybean. Screening of 34 isolates of endophytic fungi identified the phytases produced by Rhizoctonia sp. and Fusarium verticillioides . The phytase production were the best induced by phytic acid and rice bran compared the others inducer in submerged fermentation medium used. The phytase produced by both Rhizoctonia sp. and F. verticillioides have pH optimum at 4.0 and 5.0 respectively. The characterization of phytase from Fusarium verticillioides showed that temperature optimum was 500C and stability until 600C, the pH optimum 5.0 and pH stability was 2.5 – 6.0, and substrate specificity were rice bran>soybean meal>corn> coconut cake, respectively.

Predictive Clustering Hybrid Regression(pCHR) Approach and Its Application to Sucrose-Based Biohydrogen Production

A predictive clustering hybrid regression (pCHR) approach was developed and evaluated using dataset from H2- producing sucrose-based bioreactor operated for 15 months. The aim was to model and predict the H2-production rate using information available about envirome and metabolome of the bioprocess. Selforganizing maps (SOM) and Sammon map were used to visualize the dataset and to identify main metabolic patterns and clusters in bioprocess data. Three metabolic clusters: acetate coupled with other metabolites, butyrate only, and transition phases were detected. The developed pCHR model combines principles of k-means clustering, kNN classification and regression techniques. The model performed well in modeling and predicting the H2-production rate with mean square error values of 0.0014 and 0.0032, respectively.

Experimental Study of Light Crude Oil-Water Emulsions

This paper made an attempt to investigate the problem associated with enhancement of emulsions of light crude oil-water recovery in an oil field of Algerian Sahara. Measurements were taken through experiments using RheoStress (RS600). Factors such as shear rate, temperature and light oil concentration on the viscosity behavior were considered. Experimental measurements were performed in terms of shear stress–shear rate, yield stress and flow index on mixture of light crude oil–water. The rheological behavior of emulsion showed Non-Newtonian shear thinning behavior (Herschel-Bulkley). The experiments done in the laboratory showed the stability of some water in light crude oil emulsions form during consolidate oil recovery process. To break the emulsion using additives may involve higher cost and could be very expensive. Therefore, further research should be directed to find solution of these problems that have been encountered.

On the Mathematical Structure and Algorithmic Implementation of Biochemical Network Models

Modeling and simulation of biochemical reactions is of great interest in the context of system biology. The central dogma of this re-emerging area states that it is system dynamics and organizing principles of complex biological phenomena that give rise to functioning and function of cells. Cell functions, such as growth, division, differentiation and apoptosis are temporal processes, that can be understood if they are treated as dynamic systems. System biology focuses on an understanding of functional activity from a system-wide perspective and, consequently, it is defined by two hey questions: (i) how do the components within a cell interact, so as to bring about its structure and functioning? (ii) How do cells interact, so as to develop and maintain higher levels of organization and functions? In recent years, wet-lab biologists embraced mathematical modeling and simulation as two essential means toward answering the above questions. The credo of dynamics system theory is that the behavior of a biological system is given by the temporal evolution of its state. Our understanding of the time behavior of a biological system can be measured by the extent to which a simulation mimics the real behavior of that system. Deviations of a simulation indicate either limitations or errors in our knowledge. The aim of this paper is to summarize and review the main conceptual frameworks in which models of biochemical networks can be developed. In particular, we review the stochastic molecular modelling approaches, by reporting the principal conceptualizations suggested by A. A. Markov, P. Langevin, A. Fokker, M. Planck, D. T. Gillespie, N. G. van Kampfen, and recently by D. Wilkinson, O. Wolkenhauer, P. S. Jöberg and by the author.

Effect of CW Laser Annealing on Silicon Surface for Application of Power Device

As application of re-activation of backside on power device Insulated Gate Bipolar Transistor (IGBT), laser annealing was employed to irradiate amorphous silicon substrate, and resistivities were measured using four point probe measurement. For annealing the amorphous silicon two lasers were used at wavelength of visible green (532 nm) together with Infrared (793 nm). While the green laser efficiently increased temperature at top surface the Infrared laser reached more deep inside and was effective for melting the top surface. A finite element method was employed to evaluate time dependent thermal distribution in silicon substrate.

Effective Digital Music Retrieval System through Content-based Features

In this paper, we propose effective system for digital music retrieval. We divided proposed system into Client and Server. Client part consists of pre-processing and Content-based feature extraction stages. In pre-processing stage, we minimized Time code Gap that is occurred among same music contents. As content-based feature, first-order differentiated MFCC were used. These presented approximately envelop of music feature sequences. Server part included Music Server and Music Matching stage. Extracted features from 1,000 digital music files were stored in Music Server. In Music Matching stage, we found retrieval result through similarity measure by DTW. In experiment, we used 450 queries. These were made by mixing different compression standards and sound qualities from 50 digital music files. Retrieval accurate indicated 97% and retrieval time was average 15ms in every single query. Out experiment proved that proposed system is effective in retrieve digital music and robust at various user environments of web.

Dynamic Clustering Estimation of Tool Flank Wear in Turning Process using SVD Models of the Emitted Sound Signals

Monitoring the tool flank wear without affecting the throughput is considered as the prudent method in production technology. The examination has to be done without affecting the machining process. In this paper we proposed a novel work that is used to determine tool flank wear by observing the sound signals emitted during the turning process. The work-piece material we used here is steel and aluminum and the cutting insert was carbide material. Two different cutting speeds were used in this work. The feed rate and the cutting depth were constant whereas the flank wear was a variable. The emitted sound signal of a fresh tool (0 mm flank wear) a slightly worn tool (0.2 -0.25 mm flank wear) and a severely worn tool (0.4mm and above flank wear) during turning process were recorded separately using a high sensitive microphone. Analysis using Singular Value Decomposition was done on these sound signals to extract the feature sound components. Observation of the results showed that an increase in tool flank wear correlates with an increase in the values of SVD features produced out of the sound signals for both the materials. Hence it can be concluded that wear monitoring of tool flank during turning process using SVD features with the Fuzzy C means classification on the emitted sound signal is a potential and relatively simple method.

Forecasting e-Learning Efficiency by Using Artificial Neural Networks and a Balanced Score Card

Forecasting the values of the indicators, which characterize the effectiveness of performance of organizations is of great importance for their successful development. Such forecasting is necessary in order to assess the current state and to foresee future developments, so that measures to improve the organization-s activity could be undertaken in time. The article presents an overview of the applied mathematical and statistical methods for developing forecasts. Special attention is paid to artificial neural networks as a forecasting tool. Their strengths and weaknesses are analyzed and a synopsis is made of the application of artificial neural networks in the field of forecasting of the values of different education efficiency indicators. A method of evaluation of the activity of universities using the Balanced Scorecard is proposed and Key Performance Indicators for assessment of e-learning are selected. Resulting indicators for the evaluation of efficiency of the activity are proposed. An artificial neural network is constructed and applied in the forecasting of the values of indicators for e-learning efficiency on the basis of the KPI values.

A K-Means Based Clustering Approach for Finding Faulty Modules in Open Source Software Systems

Prediction of fault-prone modules provides one way to support software quality engineering. Clustering is used to determine the intrinsic grouping in a set of unlabeled data. Among various clustering techniques available in literature K-Means clustering approach is most widely being used. This paper introduces K-Means based Clustering approach for software finding the fault proneness of the Object-Oriented systems. The contribution of this paper is that it has used Metric values of JEdit open source software for generation of the rules for the categorization of software modules in the categories of Faulty and non faulty modules and thereafter empirically validation is performed. The results are measured in terms of accuracy of prediction, probability of Detection and Probability of False Alarms.

Investigation of Plant Density and Weed Competition in Different Cultivars of Wheat In Khoramabad Region

In order to study the effect of plant density and competition of wheat with field bindweed (Convolvulus arvensis) on yield and agronomical properties of wheat(Triticum Sativum) in irrigated conditions, a factorial experiment as the base of complete randomize block design in three replication was conducted at the field of Kamalvand in khoramabad (Lorestan) region of Iran during 2008-2009. Three plant density (Factor A=200, 230 and 260kg/ha) three cultivar (Factor B=Bahar,Pishtaz and Alvand) and weed control (Factor C= control and no control of weeds)were assigned in experiment. Results show that: Plant density had significant effect (statistically) on seed yield, 1000 seed weight, weed density and dry weight of weeds, seed yield and harvest index had been meaningful effect for cultivars. The interaction between plant density and cultivars for weed density, seed yield, thousand seed weight and harvest index were significant. 260 kg/ha (plant density) of wheat had more effect on increasing of seed yield in Bahar cultivar wheat in khoramabad region of Iran.

A New Approach for Effect Evaluation of Sediment Management

Safety, river environment, and sediment utilization are the elements of the target of sediment management. As a change in an element by sediment management, may affect the other two elements, and the priority among three elements depends on stakeholders. It is necessary to develop a method to evaluate the effect of sediment management on each element and an integrated evaluation method for socio-economic effect. In this study, taking Mount Merapi basin as an investigation field, the method for an active volcanic basin was developed. An integrated evaluation method for sediment management was discussed from a socio-economic point on safety, environment, and sediment utilization and a case study of sediment management was evaluated by means of this method. To evaluate the effect of sediment management, some parameters on safety, utilization, and environment have been introduced. From a utilization point of view, job opportunity, additional income of local people, and tax income to local government were used to evaluate the effectiveness of sediment management. The risk degree of river infrastructure was used to describe the effect of sediment management on a safety aspect. To evaluate the effects of sediment management on environment, the mean diameter of grain size distribution of riverbed surface was used. On the coordinate system designating these elements, the direction of change in basin condition by sediment management can be predicted, so that the most preferable sediment management can be decided. The results indicate that the cases of sediment management tend to give the negative impacts on sediment utilization. However, these sediment managements will give positive impacts on safety and environment condition. Evaluation result from a social-economic point of view shows that the case study of sediment management reduces job opportunity and additional income for inhabitants as well as tax income for government. Therefore, it is necessary to make another policy for creating job opportunity for inhabitants to support these sediment managements.

Building an e-Learning System Model with Implications for Research and Instructional Use

This paper demonstrates a model of an e-Learning system based on nowadays learning theory and distant education practice. The relationships in the model are designed to be simple and functional and do not necessarily represent any particular e- Learning environments. It is meant to be a generic e-Learning system model with implications for any distant education course instructional design. It allows online instructors to move away from the discrepancy between the courses and body of knowledge. The interrelationships of four primary sectors that are at the e-Learning system are presented in this paper. This integrated model includes [1] pedagogy, [2] technology, [3] teaching, and [4] learning. There are interactions within each of these sectors depicted by system loop map.