Error Analysis of Nonconventional Electrical Moisture-meter under Simplified Conditions

An electrical apparatus for measuring moisture content was developed by our laboratory and uses dependence of electrical properties on water content in studied material. Error analysis of the apparatus was run by measuring different volumes of water in a simplified specimen, i.e. hollow plexiglass block, in order to avoid as many side-effects as possible. Obtained data were processed using both basic and advanced statistics and results were compared with each other. The influence of water content on accuracy of measured data was studied as well as the influence of variation of apparatus' proper arrangement or factual methodics of its usage. The overall coefficient of variation was 4%. There was no trend found in results of error dependence on water content. Comparison with current surveys led to a conclusion, that the studied apparatus can be used for indirect measurement of water content in porous materials, with expectable error and under known conditions. Factual experiments with porous materials are not involved, but are currently under investigation.

A Study on Mechanical Properties of Fiberboard Made of Durian Rind through Latex with Phenolic Resin as Binding Agent

This study was aimed to study the probability about the production of fiberboard made of durian rind through latex with phenolic resin as binding agent. The durian rind underwent the boiling process with NaOH [7], [8] and then the fiber from durian rind was formed into fiberboard through heat press. This means that durian rind could be used as replacement for plywood in plywood industry by using durian fiber as composite material with adhesive substance. This research would study the probability about the production of fiberboard made of durian rind through latex with phenolic resin as binding agent. At first, durian rind was split, exposed to light, boiled and steamed in order to gain durian fiber. Then, fiberboard was tested with the density of 600 Kg/m3 and 800 Kg/m3. in order to find a suitable ratio of durian fiber and latex. Afterwards, mechanical properties were tested according to the standards of ASTM and JIS A5905-1994. After the suitable ratio was known, the test results would be compared with medium density fiberboard (MDF) and other related research studies. According to the results, fiberboard made of durian rind through latex with phenolic resin at the density of 800 Kg/m3 at ratio of 1:1, the moisture was measured to be 5.05% with specific gravity (ASTM D 2395-07a) of 0.81, density (JIS A 5905-1994) of 0.88 g/m3, tensile strength, hardness (ASTM D2240), flexibility or elongation at break yielded similar values as the ones by medium density fiberboard (MDF).

Application New Approach with Two Networks Slow and Fast on the Asynchronous Machine

In this paper, we propose a new modular approach called neuroglial consisting of two neural networks slow and fast which emulates a biological reality recently discovered. The implementation is based on complex multi-time scale systems; validation is performed on the model of the asynchronous machine. We applied the geometric approach based on the Gerschgorin circles for the decoupling of fast and slow variables, and the method of singular perturbations for the development of reductions models. This new architecture allows for smaller networks with less complexity and better performance in terms of mean square error and convergence than the single network model.

Dynamic Modeling and Simulation of Industrial Naphta Reforming Reactor

This work investigated the steady state and dynamic simulation of a fixed bed industrial naphtha reforming reactors. The performance of the reactor was investigated using a heterogeneous model. For process simulation, the differential equations are solved using the 4th order Runge-Kutta method .The models were validated against measured process data of an existing naphtha reforming plant. The results of simulation in terms of components yields and temperature of the outlet were in good agreement with empirical data. The simple model displays a useful tool for dynamic simulation, optimization and control of naphtha reforming.

Restriction of Iodine Release under Severe Accident Conditions at NPP MIR.1200

Iodine radionuclides in accident releases under severe accident conditions at NPP with VVER are the most radiationimportant with a view to population dose generation at the beginning of the accident. To decrease radiation consequences of severe accidents the technical solutions for severe accidents management have been proposed in MIR.1200 project, with consideration of the measures for suppression of volatile iodine forms generation in the containment. Behavior dynamics of different iodine forms in the containment under severe accident conditions has been analyzed for the purpose of these technical solutions justification.

Fast Wavelet Image Denoising Based on Local Variance and Edge Analysis

The approach based on the wavelet transform has been widely used for image denoising due to its multi-resolution nature, its ability to produce high levels of noise reduction and the low level of distortion introduced. However, by removing noise, high frequency components belonging to edges are also removed, which leads to blurring the signal features. This paper proposes a new method of image noise reduction based on local variance and edge analysis. The analysis is performed by dividing an image into 32 x 32 pixel blocks, and transforming the data into wavelet domain. Fast lifting wavelet spatial-frequency decomposition and reconstruction is developed with the advantages of being computationally efficient and boundary effects minimized. The adaptive thresholding by local variance estimation and edge strength measurement can effectively reduce image noise while preserve the features of the original image corresponding to the boundaries of the objects. Experimental results demonstrate that the method performs well for images contaminated by natural and artificial noise, and is suitable to be adapted for different class of images and type of noises. The proposed algorithm provides a potential solution with parallel computation for real time or embedded system application.

Development of a Health Literacy Scale for Chinese-Speaking Adults in Taiwan

Background, measuring an individual-s Health Literacy is gaining attention, yet no appropriate instrument is available in Taiwan. Measurement tools that were developed and used in western countries may not be appropriate for use in Taiwan due to a different language system. Purpose of this research was to develop a Health Literacy measurement instrument specific for Taiwan adults. Methods, several experts of clinic physicians; healthcare administrators and scholars identified 125 common used health related Chinese phrases from major medical knowledge sources that easy accessible to the public. A five-point Likert scale is used to measure the understanding level of the target population. Such measurement is then used to compare with the correctness of their answers to a health knowledge test for validation. Samples, samples under study were purposefully taken from four groups of people in the northern Pingtung, OPD patients, university students, community residents, and casual visitors to the central park. A set of health knowledge index with 10 questions is used to screen those false responses. A sample size of 686 valid cases out of 776 was then included to construct this scale. An independent t-test was used to examine each individual phrase. The phrases with the highest significance are then identified and retained to compose this scale. Result, a Taiwan Health Literacy Scale (THLS) was finalized with 66 health-related phrases under nine divisions. Cronbach-s alpha of each division is at a satisfactory level of 89% and above. Conclusions, factors significantly differentiate the levels of health literacy are education, female gender, age, family members of stroke victims, experience with patient care, and healthcare professionals in the initial application in this study..

Operational Risks for Highway Projects in Malaysia

The Malaysia Highway Authority (MHA) was established by the Government in 1980 for the purpose of designing, constructing and maintaining toll highways in Malaysia that include the North-South Expressway and the Penang Bridge, which were procured using the publicly-funded traditional procurement. However following a recession in the mid 80-s, the operations of these tolledhighways had been privatized to ensure that their operational services continue through private financing as a result of long-term concession agreement concurred between the Malaysian Government and private operators. The change in the contract strategy for highway projects in Malaysia would have a great tendency to dictate a significant risk exposure towards the key parties involved, particularly the Malaysian Government as project principal, unless operational risks are clearly identified and managed via appropriate mitigation measures prior to a contract signing. This research identifies potential operational risks that have a possibility to occur in highway projects in Malaysia from the perspective of public sector clients. Since this research focuses on the operational risks for highway projects in Malaysia, the initial results acquired from literature review on the operational risks of highway projects in some Asian countries are then justified by a number of key individuals from the MHA through interviews. As a result, among key operational risks that have possibility to occur in the highway projects in Malaysia include initial toll-tariff decided by the Government, traffic congestion, change of road network and overloaded freight transportation, which could cause damage to the road surface and hence affecting the operation of a particular highway.

Role of Oxide Scale Thickness Measurements in Boiler Conditions Assessment

Oxide scale thickness measurements are used in assessing the life of different components operating at high temperature environment. Such measurements provide an approximation for the temperature inside components such as reheater and superheater tubes. A number of failures were encountered in one of the boilers in one of Kuwaiti power plants. These failure were mainly in the first row of the primary super heater tubes, therefore, the specialized engineer decide to replace them during the annual shutdown. As a tool for failure analysis, oxide scale thickness measurement were used to investigate the temperature distribution in these tubes. In this paper, the oxide scale thickness of these tubes were measured and used for analysis. The measurements provide an illustration of the distribution of heat transfer of the primary superheater tubes in the boiler system. Remarks and analysis about the design of the boiler are also provided.

Effect of Anoxia on Root Growth and Grain Yield of Wheat Cultivars

Waterlogging reduces shoot and root growth and final yield of wheat. Waterlogged sites have a combination of low slope, high rainfall, heavy texture and low permeability. This study was aimed the importance of waterlogging on root growth and wheat yield. In order to study the effects of different waterlogging duration (0, 10, 20 and 30 days) at growth stages (1-leaf stage, tillering stage and stem elongation stage) on root growth of wheat cultivars (Chamran, Vee/Nac and Yavaroos), one pot experiment was carried out. The experiment was a factorial according to a RCBD with three replications. Results showed that root dry weight and total root length in the anthesis and grain ripening stages and biological and grain yields were significantly different between cultivars, growth stages and waterlogging durations. Vee/Nac was found superior with respect to other cultivars. Susceptibility to waterlogging at different growth stages for cultivars was 1-leaf stage > tillering stage > stem elongation stage. Under waterlogging treatments, grain and biological yields, were decreased 44.5 and 39.8%, respectively. Root length and root dry weight were reduced 55.1 and 45.2%, respectively, too. In this experiment, decrease at root growth because of waterlogging reduced grain and biological yields. Based on the results, even short period (10 days) of waterlogging had unrecoverable effects on the root growth and grain yield of wheat.

How Do Politicians Recover Their Costs? The Political Economy of Representative Democracy in India

This paper explores the features of political economy in the dynamics of representative politics in India. Politics is seen as enhancing economic benefits through acquiring and maintenance of power in the realm of democratic set up. The system of representation is riddled with competitive populism. Emerging leaders and parties are forced to accommodate their ideologies in coping with competitive politics. Electoral politics and voting behaviour reflect series of influences mooted by the politicians. Voters are accustomed to expect benefits outs of state exchequer. The electoral competitors show a changing phase of investment and return policy. Every elector has to spend and realize his costs in his tenure. In the case of defeated electors, even the cost recovery is not possible directly; there are indirect means to recover their costs. The series of case studies show the method of party funding, campaign financing, electoral expenditure, and cost recovery. Regulations could not restrict the level of spending. Several cases of disproportionate accumulation of wealth by the politicians reveal that money played a major part in electoral process. The political economy of representative politics hitherto ignores how a politician spends and recovers his cost and multiples his wealth. To be sure, the acquiring and maintenance of power is to enhance the wealth of the electors.

Principal Component Regression in Noninvasive Pineapple Soluble Solids Content Assessment Based On Shortwave Near Infrared Spectrum

The Principal component regression (PCR) is a combination of principal component analysis (PCA) and multiple linear regression (MLR). The objective of this paper is to revise the use of PCR in shortwave near infrared (SWNIR) (750-1000nm) spectral analysis. The idea of PCR was explained mathematically and implemented in the non-destructive assessment of the soluble solid content (SSC) of pineapple based on SWNIR spectral data. PCR achieved satisfactory results in this application with root mean squared error of calibration (RMSEC) of 0.7611 Brix°, coefficient of determination (R2) of 0.5865 and root mean squared error of crossvalidation (RMSECV) of 0.8323 Brix° with principal components (PCs) of 14.

Effects of Thermal Radiation and Magnetic Field on Unsteady Stretching Permeable Sheet in Presence of Free Stream Velocity

The aim of this paper is to investigate twodimensional unsteady flow of a viscous incompressible fluid about stagnation point on permeable stretching sheet in presence of time dependent free stream velocity. Fluid is considered in the influence of transverse magnetic field in the presence of radiation effect. Rosseland approximation is use to model the radiative heat transfer. Using time-dependent stream function, partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by using Runge-Kutta Fehlberg method with the help of Newton-Raphson shooting technique. In the present work the effect of unsteadiness parameter, magnetic field parameter, radiation parameter, stretching parameter and the Prandtl number on flow and heat transfer characteristics have been discussed. Skin-friction coefficient and Nusselt number at the sheet are computed and discussed. The results reported in the paper are in good agreement with published work in literature by other researchers.

Numerical Simulation for the Formability Prediction of the Laser Welded Blanks (TWB)

Tailor-welded Blanks (TWBs) are tailor made for different complex component designs by welding multiple metal sheets with different thicknesses, shapes, coatings or strengths prior to forming. In this study the Hemispherical Die Stretching (HDS) test (out-of-plane stretching) of TWBs were simulated via ABAQUS/Explicit to obtain the Forming Limit Diagrams (FLDs) of Stainless steel (AISI 304) laser welded blanks with different thicknesses. Two criteria were used to detect the start of necking to determine the FLD for TWBs and parent sheet metals. These two criteria are the second derivatives of the major and thickness strains that are given from the strain history of simulation. In the other word, in these criteria necking starts when the second derivative of thickness or major strain reaches its maximum. With having the time of onset necking, one can measure the major and minor strains at the critical area and determine the forming limit curve.

Ranking Alternatives in Multi-Criteria Decision Analysis using Common Weights Based on Ideal and Anti-ideal Frontiers

One of the most important issues in multi-criteria decision analysis (MCDA) is to determine the weights of criteria so that all alternatives can be compared based on the collective performance of criteria. In this paper, one of popular methods in data envelopment analysis (DEA) known as common weights (CWs) is used to determine the weights in MCDA. Two frontiers named ideal and anti-ideal frontiers, instead of ideal and anti-ideal alternatives, are defined based on two new proposed CWs models. Ideal and antiideal frontiers are more flexible than that of alternatives. According to the optimal solutions of these two models, the distances of an alternative from the ideal and anti-ideal frontiers are derived. Then, a relative distance is introduced to measure the value of each alternative. The suggested models are linear and despite weight restrictions are feasible. An example is presented for explaining the method and for comparing to the existing literature.

Internal Surface Measurement of Nanoparticle with Polarization-interferometric Nonlinear Confocal Microscope

Polarization-interferometric nonlinear confocal microscopy is proposed for measuring a nano-sized particle with optical anisotropy. The anisotropy in the particle was spectroscopically imaged through a three-dimensional distribution of third-order nonlinear dielectric polarization photoinduced.

The Study on the Conversed Remediation between Old and New Media in Case of Smart Phone and PC in South Korea

After Apple's first introduction its smart phone, iPhone in the end of 2009 in Korea, the number of Korean smarphone users had been rapidly increasing so that the half of Korean population became smart phone users as of February, 2012. Currently, smart phones are positioned as a major digital media with powerful influences in Korea. And, now, Koreans are leaning new information, enjoying games and communicating other people every time and everywhere. As smart phone devices' performances increased, the number of usable services became more while adequate GUI developments are required to implement various functions with smart phones. The strategy to provide similar experiences on smart phones through familiar features based on employment of existing media's functions mostly contributed to smart phones' popularization in connection with smart phone devices' iconic GUIs. The spread of Smart phone increased mobile web accesses. Therefore, the attempts to implement PC's web in the smart phone's web are continuously made. The mobile web GUI provides familiar experiences to users through designs adequately utilizing the smart phone's GUIs. As the number of users familiarized to smart phones and mobile web GUIs, opposite to reversed remediation from many parts of PCs, PCs are starting to adapt smart phone GUIs. This study defines this phenomenon as the reversed remediation, and reviews the reversed remediation cases of Smart phone GUI' characteristics of PCs. For this purpose, the established study issues are as under: · what is the reversed remediation? · what are the smart phone GUI's characteristics? · what kind of interrelationship exist s between the smart phone and PC's web site? It is meaningful in the forecast of the future GUI's change by understanding of characteristics in the paradigm changes of PC and smart phone's GUI designs. This also will be helpful to establish strategies for digital devices' development and design.

Active Vibration Control of Flexible Beam using Differential Evolution Optimisation

This paper presents the development of an active vibration control using direct adaptive controller to suppress the vibration of a flexible beam system. The controller is realized based on linear parametric form. Differential evolution optimisation algorithm is used to optimize the controller using single objective function by minimizing the mean square error of the observed vibration signal. Furthermore, an alternative approach is developed to systematically search for the best controller model structure together with it parameter values. The performance of the control scheme is presented and analysed in both time and frequency domain. Simulation results demonstrate that the proposed scheme is able to suppress the unwanted vibration effectively.

Smartphones for In-home Diagnostics in Telemedicine

Many contemporary telemedical applications rely on regular consultations over the phone or video conferencing which consumes valuable resources such as the time of the doctors. Some applications or treatments allow automated diagnostics on the patient side which only notifies the doctors in case a significant worsening of patient’s condition is measured. Such programs can save valuable resources but an important implementation issue is how to ensure effective and cheap diagnostics on the patient side. First, specific diagnostic devices on patient side are expensive and second, they need to be user-˜friendly to encourage patient’s cooperation and reduce errors in usage which may cause noise in diagnostic data. This article proposes the use of modern smartphones and various build-in or attachable sensors as universal diagnostic devices applicable in a wider range of telemedical programs and demonstrates their application on a case-study – a program for schizophrenic relapse prevention.

A Study on the Characteristics of the Korean Color Based On the Comparative Analysis of the Korea, China and Japan-s Porcelains

Ceramics comprise the largest proportion of Korea-s cultural heritage currently preserved (Cited from “The Beauty of Old Ceramics of Korea" written by Yoon Yong-iee). Thus, this researcher conducted this investigation in an attempt to gain insight into Korea-s past culture and the lost period of the colonial period and the Korean War by looking into the ceramics. Korea, China and Japan are part of the similar cultural bloc within the East Asian region. Their porcelains manifest distinctive characteristics by each nation along with similarities. Thus, this research seeks to find the distinctive characteristics of the Korean porcelain by conducting comparative analysis of the similarities and distinctive characteristics. These distinctive characteristics are manifested effectively in the colors of the porcelains following the materials that can be obtained in Korea, China and Japan and production method. Likewise, this research seeks to identify the characteristics of the Korean porcelains- colors based on the comparative analysis of the porcelain colors. The reasons that porcelains were selected were because they are the most well preserved cultural remains in Korea and since they have both similarities and distinctive characteristics due to the cultural interchanges among Korea, China and Japan, which facilitates comparative study. The research targets include Korea, China and Japan-s porcelains. By comparing the colors of the porcelains from Korea, China and Japan that have their distinctive characteristics, this research seeks to identify Korea-specific porcelain colors. These colors derive from the materials that can be obtained only in Korea, and they are affected by the ideologies that governed at the time. This research is meaningful in the sense that this identifies the colors that embraces the Korean culture and provides important data by leveraging the study of the characteristics of the Korea-specific porcelains.