An Enhanced Cryptanalytic Attack on Knapsack Cipher using Genetic Algorithm

With the exponential growth of networked system and application such as eCommerce, the demand for effective internet security is increasing. Cryptology is the science and study of systems for secret communication. It consists of two complementary fields of study: cryptography and cryptanalysis. The application of genetic algorithms in the cryptanalysis of knapsack ciphers is suggested by Spillman [7]. In order to improve the efficiency of genetic algorithm attack on knapsack cipher, the previously published attack was enhanced and re-implemented with variation of initial assumptions and results are compared with Spillman results. The experimental result of research indicates that the efficiency of genetic algorithm attack on knapsack cipher can be improved with variation of initial assumption.

Confronting the Uncertainty of Systemic Innovation in Public Welfare Services

Faced with social and health system capacity constraints and rising and changing demand for welfare services, governments and welfare providers are increasingly relying on innovation to help support and enhance services. However, the evidence reported by several studies indicates that the realization of that potential is not an easy task. Innovations can be deemed inherently complex to implement and operate, because many of them involve a combination of technological and organizational renewal within an environment featuring a diversity of stakeholders. Many public welfare service innovations are markedly systemic in their nature, which means that they emerge from, and must address, the complex interplay between political, administrative, technological, institutional and legal issues. This paper suggests that stakeholders dealing with systemic innovation in welfare services must deal with ambiguous and incomplete information in circumstances of uncertainty. Employing a literature review methodology and case study, this paper identifies, categorizes and discusses different aspects of the uncertainty of systemic innovation in public welfare services, and argues that uncertainty can be classified into eight categories: technological uncertainty, market uncertainty, regulatory/institutional uncertainty, social/political uncertainty, acceptance/legitimacy uncertainty, managerial uncertainty, timing uncertainty and consequence uncertainty.

Multiobjective Optimal Power Flow Using Hybrid Evolutionary Algorithm

This paper solves the environmental/ economic dispatch power system problem using the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and its hybrid with a Convergence Accelerator Operator (CAO), called the NSGA-II/CAO. These multiobjective evolutionary algorithms were applied to the standard IEEE 30-bus six-generator test system. Several optimization runs were carried out on different cases of problem complexity. Different quality measure which compare the performance of the two solution techniques were considered. The results demonstrated that the inclusion of the CAO in the original NSGA-II improves its convergence while preserving the diversity properties of the solution set.

Nutrients Removal from Municipal Wastewater Treatment Plant Effluent using Eichhornia Crassipes

Water hyacinth has been used in aquatic systems for wastewater purification in many years worldwide. The role of water hyacinth (Eichhornia crassipes) species in polishing nitrate and phosphorus concentration from municipal wastewater treatment plant effluent by phytoremediation method was evaluated. The objective of this project is to determine the removal efficiency of water hyacinth in polishing nitrate and phosphorus, as well as chemical oxygen demand (COD) and ammonia. Water hyacinth is considered as the most efficient aquatic plant used in removing vast range of pollutants such as organic matters, nutrients and heavy metals. Water hyacinth, also referred as macrophytes, were cultivated in the treatment house in a reactor tank of approximately 90(L) x 40(W) x 25(H) in dimension and built with three compartments. Three water hyacinths were placed in each compartments and water sample in each compartment were collected in every two days. The plant observation was conducted by weight measurement, plant uptake and new young shoot development. Water hyacinth effectively removed approximately 49% of COD, 81% of ammonia, 67% of phosphorus and 92% of nitrate. It also showed significant growth rate at starting from day 6 with 0.33 shoot/day and they kept developing up to 0.38 shoot/day at the end of day 24. From the studies conducted, it was proved that water hyacinth is capable of polishing the effluent of municipal wastewater which contains undesirable amount of nitrate and phosphorus concentration.

An Advanced Time-Frequency Domain Method for PD Extraction with Non-Intrusive Measurement

Partial discharge (PD) detection is an important method to evaluate the insulation condition of metal-clad apparatus. Non-intrusive sensors which are easy to install and have no interruptions on operation are preferred in onsite PD detection. However, it often lacks of accuracy due to the interferences in PD signals. In this paper a novel PD extraction method that uses frequency analysis and entropy based time-frequency (TF) analysis is introduced. The repetitive pulses from convertor are first removed via frequency analysis. Then, the relative entropy and relative peak-frequency of each pulse (i.e. time-indexed vector TF spectrum) are calculated and all pulses with similar parameters are grouped. According to the characteristics of non-intrusive sensor and the frequency distribution of PDs, the pulses of PD and interferences are separated. Finally the PD signal and interferences are recovered via inverse TF transform. The de-noised result of noisy PD data demonstrates that the combination of frequency and time-frequency techniques can discriminate PDs from interferences with various frequency distributions.

An Improved Method to Watermark Images Sensitive to Blocking Artifacts

A new digital watermarking technique for images that are sensitive to blocking artifacts is presented. Experimental results show that the proposed MDCT based approach produces highly imperceptible watermarked images and is robust to attacks such as compression, noise, filtering and geometric transformations. The proposed MDCT watermarking technique is applied to fingerprints for ensuring security. The face image and demographic text data of an individual are used as multiple watermarks. An AFIS system was used to quantitatively evaluate the matching performance of the MDCT-based watermarked fingerprint. The high fingerprint matching scores show that the MDCT approach is resilient to blocking artifacts. The quality of the extracted face and extracted text images was computed using two human visual system metrics and the results show that the image quality was high.

Plug and Play Interferometer Configuration using Single Modulator Technique

We demonstrate single-photon interference over 10 km using a plug and play system for quantum key distribution. The quality of the interferometer is measured by using the interferometer visibility. The coding of the signal is based on the phase coding and the value of visibility is based on the interference effect, which result a number of count. The setup gives full control of polarization inside the interferometer. The quality measurement of the interferometer is based on number of count per second and the system produces 94 % visibility in one of the detectors.

A Simplified Adaptive Decision Feedback Equalization Technique for π/4-DQPSK Signals

We present a simplified equalization technique for a π/4 differential quadrature phase shift keying ( π/4 -DQPSK) modulated signal in a multipath fading environment. The proposed equalizer is realized as a fractionally spaced adaptive decision feedback equalizer (FS-ADFE), employing exponential step-size least mean square (LMS) algorithm as the adaptation technique. The main advantage of the scheme stems from the usage of exponential step-size LMS algorithm in the equalizer, which achieves similar convergence behavior as that of a recursive least squares (RLS) algorithm with significantly reduced computational complexity. To investigate the finite-precision performance of the proposed equalizer along with the π/4 -DQPSK modem, the entire system is evaluated on a 16-bit fixed point digital signal processor (DSP) environment. The proposed scheme is found to be attractive even for those cases where equalization is to be performed within a restricted number of training samples.

Reversible Watermarking for H.264/AVC Videos

In this paper, we propose a reversible watermarking scheme based on histogram shifting (HS) to embed watermark bits into the H.264/AVC standard videos by modifying the last nonzero level in the context adaptive variable length coding (CAVLC) domain. The proposed method collects all of the last nonzero coefficients (or called last level coefficient) of 4×4 sub-macro blocks in a macro block and utilizes predictions for the current last level from the neighbor block-s last levels to embed watermark bits. The feature of the proposed method is low computational and has the ability of reversible recovery. The experimental results have demonstrated that our proposed scheme has acceptable degradation on video quality and output bit-rate for most test videos.

Response Surface Based Optimization of Toughness of Hybrid Polyamide 6 Nanocomposites

Toughening of polyamide 6 (PA6)/ Nanoclay (NC) nanocomposites with styrene-ethylene/butadiene-styrene copolymer (SEBS) using maleated styrene-ethylene/butadiene-styrene copolymer (mSEBS)/ as a compatibilizer were investigated by blending them in a co-rotating twin-screw extruder. Response surface method of experimental design was used for optimizing the material and processing parameters. Effect of four factors, including SEBS, mSEBS and NC contents as material variables and order of mixing as a processing factor, on toughness of hybrid nanocomposites were studied. All the prepared samples showed ductile behavior and low temperature Izod impact toughness of some of the hybrid nanocomposites demonstrated 900% improvement compared to the PA6 matrix while the modulus showed maximum enhancement of 20% compared to the pristine PA6 resin.

Italians- Social and Emotional Loneliness: The Results of Five Studies

Subjective loneliness describes people who feel a disagreeable or unacceptable lack of meaningful social relationships, both at the quantitative and qualitative level. The studies to be presented tested an Italian 18-items self-report loneliness measure, that included items adapted from scales previously developed, namely a short version of the UCLA (Russell, Peplau and Cutrona, 1980), and the 11-items Loneliness scale by De Jong-Gierveld & Kamphuis (JGLS; 1985). The studies aimed at testing the developed scale and at verifying whether loneliness is better conceptualized as a unidimensional (so-called 'general loneliness') or a bidimensional construct, namely comprising the distinct facets of social and emotional loneliness. The loneliness questionnaire included 2 singleitem criterion measures of sad mood, and social contact, and asked participants to supply information on a number of socio-demographic variables. Factorial analyses of responses obtained in two preliminary studies, with 59 and 143 Italian participants respectively, showed good factor loadings and subscale reliability and confirmed that perceived loneliness has clearly two components, a social and an emotional one, the latter measured by two subscales, a 7-item 'general' loneliness subscale derived from UCLA, and a 6–item 'emotional' scale included in the JGLS. Results further showed that type and amount of loneliness are related, negatively, to frequency of social contacts, and, positively, to sad mood. In a third study data were obtained from a nation-wide sample of 9.097 Italian subjects, 12 to about 70 year-olds, who filled the test on-line, on the Italian web site of a large-audience magazine, Focus. The results again confirmed the reliability of the component subscales, namely social, emotional, and 'general' loneliness, and showed that they were highly correlated with each other, especially the latter two. Loneliness scores were significantly predicted by sex, age, education level, sad mood and social contact, and, less so, by other variables – e.g., geographical area and profession. The scale validity was confirmed by the results of a fourth study, with elderly men and women (N 105) living at home or in residential care units. The three subscales were significantly related, among others, to depression, and to various measures of the extension of, and satisfaction with, social contacts with relatives and friends. Finally, a fifth study with 315 career-starters showed that social and emotional loneliness correlate with life satisfaction, and with measures of emotional intelligence. Altogether the results showed a good validity and reliability in the tested samples of the entire scale, and of its components.

Stability of Interval Fractional-order Systems with Order 0 < α < 1

In this paper, some brief sufficient conditions for the stability of FO-LTI systems dαx(t) dtα = Ax(t) with the fractional order are investigated when the matrix A and the fractional order α are uncertain or both α and A are uncertain, respectively. In addition, we also relate the stability of a fractional-order system with order 0 < α ≤ 1 to the stability of its equivalent fractional-order system with order 1 ≤ β < 2, the relationship between α and β is presented. Finally, a numeric experiment is given to demonstrate the effectiveness of our results.

Plant Location Selection by Using a Three-Step Methodology: Delphi-AHP-VIKOR

Nowadays, the plant location selection has a critical impact on the performance of numerous companies. In this paper, a methodology is presented to solve this problem. The three decision making methods, namely Delphi, AHP and improved VIKOR, are hybridized in order to make the best use of information available based on the decision makers or experts. In this respect, the aim of using Delphi is to select the most influential criteria by a few decision makers. The AHP is utilized to give weights of the selected criteria. Finally, the improved VIKOR method is applied to rank alternatives. At the end of paper, an application example demonstrates the applicability of the proposed methodology.

SMCC: Self-Managing Congestion Control Algorithm

Transmission control protocol (TCP) Vegas detects network congestion in the early stage and successfully prevents periodic packet loss that usually occurs in TCP Reno. It has been demonstrated that TCP Vegas outperforms TCP Reno in many aspects. However, TCP Vegas suffers several problems that affect its congestion avoidance mechanism. One of the most important weaknesses in TCP Vegas is that alpha and beta depend on a good expected throughput estimate, which as we have seen, depends on a good minimum RTT estimate. In order to make the system more robust alpha and beta must be made responsive to network conditions (they are currently chosen statically). This paper proposes a modified Vegas algorithm, which can be adjusted to present good performance compared to other transmission control protocols (TCPs). In order to do this, we use PSO algorithm to tune alpha and beta. The simulation results validate the advantages of the proposed algorithm in term of performance.

Into the Bank Lending Channel of SEE: Greek Banks- Buffering Effects

This paper tries to shed light on the existence of a bank lending channel (BLC) in South Eastern European countries (SEE). Based on a VAR framework we test the responsiveness of credit supply to monetary policy shocks. By compiling a new data set and using the reserve requirement ratio, among others, as the policy instrument we measure the effectiveness of the BLC and the buffering effect of the banks in the SEE countries. The results indicate that loan supply is significantly affected by shifts in monetary policy, when demand factors are controlled. Furthermore, by analyzing the effect of the Greek banks in the region we conclude that Greek banks do buffer the negative effects of monetary policy transmission. By having a significant market share of the SEE-s banking markets we argue that Greek banks influence positively the economic growth of SEE countries.

Enhanced Ant Colony Based Algorithm for Routing in Mobile Ad Hoc Network

Mobile Ad hoc network consists of a set of mobile nodes. It is a dynamic network which does not have fixed topology. This network does not have any infrastructure or central administration, hence it is called infrastructure-less network. The change in topology makes the route from source to destination as dynamic fixed and changes with respect to time. The nature of network requires the algorithm to perform route discovery, maintain route and detect failure along the path between two nodes [1]. This paper presents the enhancements of ARA [2] to improve the performance of routing algorithm. ARA [2] finds route between nodes in mobile ad-hoc network. The algorithm is on-demand source initiated routing algorithm. This is based on the principles of swarm intelligence. The algorithm is adaptive, scalable and favors load balancing. The improvements suggested in this paper are handling of loss ants and resource reservation.

Implementation of RC5 Block Cipher Algorithm for Image Cryptosystems

This paper examines the implementation of RC5 block cipher for digital images along with its detailed security analysis. A complete specification for the method of application of the RC5 block cipher to digital images is given. The security analysis of RC5 block cipher for digital images against entropy attack, bruteforce, statistical, and differential attacks is explored from strict cryptographic viewpoint. Experiments and results verify and prove that RC5 block cipher is highly secure for real-time image encryption from cryptographic viewpoint. Thorough experimental tests are carried out with detailed analysis, demonstrating the high security of RC5 block cipher algorithm.

An Introduction to Methods and Technologies Applied for Reduction of Energy Consumption in Transportation Sector and Air Pollution in Iran

In Iran, due to abundance of energy resources, energy consumption is extraordinarily higher than international standards and transportation sector is considered to be one of the major consumers of energy. Moreover, air pollution in urban areas as a result of high dependence on private vehicle and lower standards of vehicles, high subsidies spent on fuel and time waste due to traffic congestion in urban areas all have led to speculations on new strategies and policies in order to control energy consumption in transportation sector. These strategies and policies will be introduced in this paper and their consequences will be analyzed with consideration to socio-economic factors affecting the urban society of Iran. Besides, the intention is to suggest and analyze new approaches such as broader application of public transportation system, demand management in transport sector, replacement of deteriorated vehicles, quality improvement in car manufacture and introduction of substitute fuels.

Interaxial Distance and Convergence Control for Efficient Stereoscopic Shooting using Horizontal Moving 3D Camera Rig

The proper assessment of interaxial distance and convergence control are important factors in stereoscopic imaging technology to make an efficient 3D image. To control interaxial distance and convergence for efficient 3D shooting, horizontal 3D camera rig is designed using some hardware components like 'LM Guide', 'Goniometer' and 'Rotation Stage'. The horizontal 3D camera rig system can be properly aligned by moving the two cameras horizontally in same or opposite directions, by adjusting the camera angle and finally considering horizontal swing as well as vertical swing. In this paper, the relationship between interaxial distance and convergence angle control are discussed and intensive experiments are performed in order to demonstrate an easy and effective 3D shooting.

Stealthy Network Transfer of Data

Users of computer systems may often require the private transfer of messages/communications between parties across a network. Information warfare and the protection and dominance of information in the military context is a prime example of an application area in which the confidentiality of data needs to be maintained. The safe transportation of critical data is therefore often a vital requirement for many private communications. However, unwanted interception/sniffing of communications is also a possibility. An elementary stealthy transfer scheme is therefore proposed by the authors. This scheme makes use of encoding, splitting of a message and the use of a hashing algorithm to verify the correctness of the reconstructed message. For this proof-of-concept purpose, the authors have experimented with the random sending of encoded parts of a message and the construction thereof to demonstrate how data can stealthily be transferred across a network so as to prevent the obvious retrieval of data.