Potential and Challenges for Better Life in Rural Communities

Public health informatics (PHI) which has seen successful implementation in the developed world, become the buzzword in the developing countries in providing improved healthcare with enhanced access. In rural areas especially, where a huge gap exists between demand and supply of healthcare facilities, PHI is being seen as a major solution. There are factors such as growing network infrastructure and the technological adoption by the health fraternity which provide support to these claims. Public health informatics has opportunities in healthcare by providing opportunities to diagnose patients, provide intra-operative assistance and consultation from a remote site. It also has certain barriers in the awareness, adaptation, network infrastructure, funding and policy related areas. There are certain medico-legal aspects involving all the stakeholders which need to be standardized to enable a working system. This paper aims to analyze the potential and challenges of Public health informatics services in rural communities.

A Study of Lean Principles Implementation in the Libyan Healthcare and Industry Sectors

Lean technique is very important in the service and industrial fields. It is defined as an effective tool to eliminate the wastes. In lean the wastes are defined as anything which does not add value to the end product. There are wastes that can be avoided, but some are unavoidable for many reasons.     The present study aims to apply the principles of lean in two different sectors, healthcare and industry. Two case studies have been selected to apply the experimental work. The first case was Al-Jalaa Hospital, while the second case study was the Technical Company of Aluminum Sections in Benghazi, LIBYA. In both case studies the Value Stream Map (VSM) of the current state has been constructed. The proposed plans have been implemented by merging or eliminating procedures or processes. The results obtained from both case studies showed improvement in Capacity, Idle time and Utilized time.

Robust & Energy Efficient Universal Gates for High Performance Computer Networks at 22nm Process Technology

Digital systems are said to be constructed using basic logic gates. These gates are the NOR, NAND, AND, OR, EXOR & EXNOR gates. This paper presents a robust three transistors (3T) based NAND and NOR gates with precise output logic levels, yet maintaining equivalent performance than the existing logic structures. This new set of 3T logic gates are based on CMOS inverter and Pass Transistor Logic (PTL). The new universal logic gates are characterized by better speed and lower power dissipation which can be straightforwardly fabricated as memory ICs for high performance computer networks. The simulation tests were performed using standard BPTM 22nm process technology using SYNOPSYS HSPICE. The 3T NAND gate is evaluated using C17 benchmark circuit and 3T NOR is gate evaluated using a D-Latch. According to HSPICE simulation in 22 nm CMOS BPTM process technology under given conditions and at room temperature, the proposed 3T gates shows an improvement of 88% less power consumption on an average over conventional CMOS logic gates. The devices designed with 3T gates will make longer battery life by ensuring extremely low power consumption.

Microcontroller Based EOG Guided Wheelchair

A new cost effective, eye controlled method was introduced to guide and control a wheel chair for disable people, based on Electrooculography (EOG). The guidance and control is effected by eye ball movements within the socket. The system consists of a standard electric wheelchair with an on-board microcontroller system attached. EOG is a new technology to sense the eye signals for eye movements and these signals are captured using electrodes, signal processed such as amplification, noise filtering, and then given to microcontroller which drives the motors attached with wheel chair for propulsion. This technique could be very useful in applications such as mobility for handicapped and paralyzed persons.

Analysis of Diverse Clustering Tools in Data Mining

Clustering in data mining is an unsupervised learning technique of aggregating the data objects into meaningful groups such that the intra cluster similarity of objects are maximized and inter cluster similarity of objects are minimized. Over the past decades several clustering tools were emerged in which clustering algorithms are inbuilt and are easier to use and extract the expected results. Data mining mainly deals with the huge databases that inflicts on cluster analysis and additional rigorous computational constraints. These challenges pave the way for the emergence of powerful expansive data mining clustering softwares. In this survey, a variety of clustering tools used in data mining are elucidated along with the pros and cons of each software.

Optimization of Surface Roughness and Vibration in Turning of Aluminum Alloy AA2024 Using Taguchi Technique

Determination of optimal conditions of machining parameters is important to reduce the production cost and achieve the desired surface quality. This paper investigates the influence of cutting parameters on surface roughness and natural frequency in turning of aluminum alloy AA2024. The experiments were performed at the lathe machine using two different cutting tools made of AISI 5140 and carbide cutting insert coated with TiC. Turning experiments were planned by Taguchi method L9 orthogonal array.Three levels for spindle speed, feed rate, depth of cut and tool overhang were chosen as cutting variables. The obtained experimental data has been analyzed using signal to noise ratio and analysis of variance. The main effects have been discussed and percentage contributions of various parameters affecting surface roughness and natural frequency, and optimal cutting conditions have been determined. Finally, optimization of the cutting parameters using Taguchi method was verified by confirmation experiments.

A Review: Comparative Analysis of Different Categorical Data Clustering Ensemble Methods

Over the past epoch a rampant amount of work has been done in the data clustering research under the unsupervised learning technique in Data mining. Furthermore several algorithms and methods have been proposed focusing on clustering different data types, representation of cluster models, and accuracy rates of the clusters. However no single clustering algorithm proves to be the most efficient in providing best results. Accordingly in order to find the solution to this issue a new technique, called Cluster ensemble method was bloomed. This cluster ensemble is a good alternative approach for facing the cluster analysis problem. The main hope of the cluster ensemble is to merge different clustering solutions in such a way to achieve accuracy and to improve the quality of individual data clustering. Due to the substantial and unremitting development of new methods in the sphere of data mining and also the incessant interest in inventing new algorithms, makes obligatory to scrutinize a critical analysis of the existing techniques and the future novelty. This paper exposes the comparative study of different cluster ensemble methods along with their features, systematic working process and the average accuracy and error rates of each ensemble methods. Consequently this speculative and comprehensive analysis will be very useful for the community of clustering practitioners and also helps in deciding the most suitable one to rectify the problem in hand.

Analytical Subthreshold Drain Current Model Incorporating Inversion Layer Effective Mobility Model for Pocket Implanted Nano Scale n-MOSFET

Carrier scatterings in the inversion channel of MOSFET dominates the carrier mobility and hence drain current. This paper presents an analytical model of the subthreshold drain current incorporating the effective electron mobility model of the pocket implanted nano scale n-MOSFET. The model is developed by assuming two linear pocket profiles at the source and drain edges at the surface and by using the conventional drift-diffusion equation. Effective electron mobility model includes three scattering mechanisms, such as, Coulomb, phonon and surface roughness scatterings as well as ballistic phenomena in the pocket implanted n-MOSFET. The model is simulated for various pocket profile and device parameters as well as for various bias conditions. Simulation results show that the subthreshold drain current data matches the experimental data already published in the literature.

Enhanced Approaches to Rectify the Noise, Illumination and Shadow Artifacts

Enhancing the quality of two dimensional signals is one of the most important factors in the fields of video surveillance and computer vision. Usually in real-life video surveillance, false detection occurs due to the presence of random noise, illumination and shadow artifacts. The detection methods based on background subtraction faces several problems in accurately detecting objects in realistic environments: In this paper, we propose a noise removal algorithm using neighborhood comparison method with thresholding. The illumination variations correction is done in the detected foreground objects by using an amalgamation of techniques like homomorphic decomposition, curvelet transformation and gamma adjustment operator. Shadow is removed using chromaticity estimator with local relation estimator. Results are compared with the existing methods and prove as high robustness in the video surveillance.

Process Parameters Optimization for Pulsed TIG Welding of 70/30 Cu-Ni Alloy Welds Using Taguchi Technique

Taguchi approach was applied to determine the most influential control factors which will yield better tensile strength of the joints of pulse TIG welded 70/30 Cu-Ni alloy. In order to evaluate the effect of process parameters such as pulse frequency, peak current, base current and welding speed on tensile strength of Pulsed current TIG welded 70/30 Cu-Ni alloy of 5 mm thickness, Taguchi parametric design and optimization approach was used. Through the Taguchi parametric design approach, the optimum levels of process parameters were determined at 95% confidence level. The results indicate that the Pulse frequency, peak current, welding speed and base current are the significant parameters in deciding the tensile strength of the joint. The predicted optimal values of tensile strength of Pulsed current Gas tungsten arc welding (PC GTAW) of 70/30 Cu-Ni alloy welds are 368.8MPa.

Exact Analysis of Resonance Frequencies of Simply Supported Cylindrical Shells

In order to study the free vibration of simply supported circular cylindrical shells; an analytical procedure is developed and discussed in detail. To identify its’ validity, the exact technique was applied to four different shell theories 1) Soedel, 2) Flugge, 3) Morley-Koiter, and 4) Donnell. The exact procedure was compared favorably with experimental results and those obtained using the numerical finite element method. A literature review reveals that beam functions are used extensively as an approximation for simply supported boundary conditions. The effects of this approximate method were also investigated on the natural frequencies by comparing results with those of the exact analysis.

Synthesis and Use of Thiourea Derivative (1-Phenyl-3- Benzoyl-2-Thiourea) for Extraction of Cadmium Ion

The environmental pollution by heavy metals became  more problematic nowadays. To solve the problem of Cadmium  accumulation in human organs which lead to dangerous effects on  human health, and to determine its concentration, the organic legand  1-phenyl-3-benzoyl-2-thiourea was used to extract the cadmium ions  from its solution. This legand as one of thiourea derivatives was  successfully synthesized. The legand was characterized by NMR and  CHN elemental analysis, and used to extract the cadmium from its  solutions by formation of a stable complex at neutral pH. The  complex was characterized by elemental analysis and melting point.  The concentrations of cadmium ions before and after the extraction  were determined by Atomic Absorption Spectrophotometer (AAS).  The data show the percentage of the extract was more than 98.7% of  the concentration of cadmium used in the study

A Model for Test Case Selection in the Software-Development Life Cycle

Software maintenance is one of the essential processes of Software-Development Life Cycle. The main philosophies of retaining software concern the improvement of errors, the revision of codes, the inhibition of future errors, and the development in piece and capacity. While the adjustment has been employing, the software structure has to be retested to an upsurge a level of assurance that it will be prepared due to the requirements. According to this state, the test cases must be considered for challenging the revised modules and the whole software. A concept of resolving this problem is ongoing by regression test selection such as the retest-all selections, random/ad-hoc selection and the safe regression test selection. Particularly, the traditional techniques concern a mapping between the test cases in a test suite and the lines of code it executes. However, there are not only the lines of code as one of the requirements that can affect the size of test suite but including the number of functions and faulty versions. Therefore, a model for test case selection is developed to cover those three requirements by the integral technique which can produce the smaller size of the test cases when compared with the traditional regression selection techniques.

Dissolved Oxygen Prediction Using Support Vector Machine

In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, Water Temperature, and Conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.

Retrofitting of Bridge Piers against the Scour Damages: Case Study of the Marand-Soofian Route Bridge

Bridge piers which are constructed in the track of high water rivers cause some variations in the flow patterns. This variation mostly is a result of the changes in river sections. Decreasing the river section, bridge piers significantly impress the flow patterns. Once the flow approaches the piers, the stream lines change their order, causing the appearance of different flow patterns around the bridge piers. New flow patterns are created following the geometry and the other technical characteristics of the piers. One of the most significant consequences of this event is the scour generated around the bridge piers which threatens the safety of the structure. In order to determine the properties of scour holes, to find maximum depth of the scour is an important factor. In this manuscript a numerical simulation of the scour around Marand-Soofian route bridge piers has been carried out via SSIIM 2.0 Software and the amount of maximum scour has been achieved subsequently. Eventually the methods for retrofitting of bridge piers against scours and also the methods for decreasing the amount of scour have been offered.

Rural Women’s Skill Acquisition in the Processing of Locust Bean in Ipokia Local Government Area of Ogun State, Nigeria

This study was carried out to assess rural women’s skill acquisition in the processing of locust bean in Ipokia Local Government Area of Ogun State, Nigeria. Simple random sampling technique was used to select 90 women locust bean processors for this study. Data were analyzed with descriptive statistics and Pearson Product Moment Correlation. The result showed that the mean age of respondents was 40.72 years. Most (70.00%) of the respondents were married. The mean processing experience was 8.63 years. 93.30% of the respondents relied on information from fellow locust beans processors and friends. All (100%) the respondents did not acquire improved processing skill through trainings and workshops. It can be concluded that the rural women’s skill acquisition on modernized processing techniques was generally low. It is hereby recommend that the rural women processors should be trained by extension service providers through series of workshops and seminars on improved processing techniques.

Awareness of Value Addition of Sweet Potato (Ipomoea batatas (L.) Lam) In Osun State, Nigeria

Awareness of value addition of sweet potato has received comparatively little attention in Nigeria despite its potential to reduce perishability and enhanced utilization of the crop in diverse products forms. This study assessed the awareness of value addition of sweet potato in Osun State, Nigeria. Multi-stage random sampling technique was used to select 120 respondents for the study. Data obtained were analyzed using descriptive statistics and multiple regression analysis. Findings showed that most (75.00%) of the respondents were male with mean age of 42.10 years and 96.70% of the respondents had formal education. The mean farm size was 2.30 hectares. Majority (75.00%) of the respondents had more than 10 years farming experience. Awareness of value addition of sweet potato was very low among the respondents. It was recommended that sweet potato farmers should be empowered through effective and efficient extension training on the use of modern processing techniques in order to enhance value addition of sweet potato. 

An Empirical Study of Gender Discrimination and Employee Performance among Academic Staff of Government Universities in Lagos State, Nigeria

Research has shown that a recruitment policy devoid of gender discrimination enhances employee performance in an organization. Previous studies in Nigeria show that gender discrimination against men and women based on their ethnic, religious and geographical identity is common. This survey, however, focuses on discrimination against women on the basis of gender and performance in government universities in Lagos State, Nigeria. The model used for this study was developed and tested in which one hundred and eighty seven copies of the questionnaire that were administered to respondents as completed by the academic staff of government universities in Lagos State were retrieved. Pearson correlation and regression were utilized for the analysis of the study, and the result showed that managerial roles based on gender discrimination against women in government universities in Lagos State have affected employee job performance negatively. The study concludes that for as long as gender discrimination rather than merit remains the basis for staff employment into positions of authority in Nigerian Universities, enhanced performance is more likely to elude employees and the educational sector in general. 

How Virtualization, Decentralization and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective

The German manufacturing industry has to withstand an increasing global competition on product quality and production costs. As labor costs are high, several industries have suffered severely under the relocation of production facilities towards aspiring countries, which have managed to close the productivity and quality gap substantially. Established manufacturing companies have recognized that customers are not willing to pay large price premiums for incremental quality improvements. As a consequence, many companies from the German manufacturing industry adjust their production focusing on customized products and fast time to market. Leveraging the advantages of novel production strategies such as Agile Manufacturing and Mass Customization, manufacturing companies transform into integrated networks, in which companies unite their core competencies. Hereby, virtualization of the process- and supply-chain ensures smooth inter-company operations providing real-time access to relevant product and production information for all participating entities. Boundaries of companies deteriorate, as autonomous systems exchange data, gained by embedded systems throughout the entire value chain. By including Cyber-Physical-Systems, advanced communication between machines is tantamount to their dialogue with humans. The increasing utilization of information and communication technology allows digital engineering of products and production processes alike. Modular simulation and modeling techniques allow decentralized units to flexibly alter products and thereby enable rapid product innovation. The present article describes the developments of Industry 4.0 within the literature and reviews the associated research streams. Hereby, we analyze eight scientific journals with regards to the following research fields: Individualized production, end-to-end engineering in a virtual process chain and production networks. We employ cluster analysis to assign sub-topics into the respective research field. To assess the practical implications, we conducted face-to-face interviews with managers from the industry as well as from the consulting business using a structured interview guideline. The results reveal reasons for the adaption and refusal of Industry 4.0 practices from a managerial point of view. Our findings contribute to the upcoming research stream of Industry 4.0 and support decision-makers to assess their need for transformation towards Industry 4.0 practices. 

Wasteless Solid-Phase Method for Conversion of Iron Ores Contaminated with Silicon and Phosphorus Compounds

Based upon generalized analysis of modern know-how in the sphere of processing, concentration and purification of iron-ore raw materials (IORM), in particular, the most widespread ferrioxide-silicate materials (FOSM), containing impurities of phosphorus and other elements compounds, noted special role of nanotechnological initiatives in improvement of such processes. Considered ideas of role of nanoparticles in processes of FOSM carbonization with subsequent direct reduction of ferric oxides contained in them to metal phase, as well as in processes of alkali treatment and separation of powered iron from phosphorus compounds. Using the obtained results the wasteless method of solid-phase processing, concentration and purification of IORM and FOSM from compounds of phosphorus, silicon and other impurities was developed and it excels known methods of direct iron reduction from iron ores and metallurgical slimes.