Collaborative Online Learning for Lecturers

This paper was prepared to see the perceptions of online lectures regarding collaborative learning, in terms of how lecturers view online collaborative learning in the higher learning institution. The purpose of this study was conducted to determine the perceptions of online lectures about collaborative learning, especially how lecturers see online collaborative learning in the university. Adult learning education enhance collaborative learning culture with the target of involving learners in the learning process to make teaching and learning more effective and open at the university. This will finally make students learning that will assist each other. It is also to cut down the pressure of loneliness and isolation might felt among adult learners. Their ways in collaborative online was also determined. In this paper, researchers collect data using questionnaires instruments. The collected data were analyzed and interpreted. By analyzing the data, researchers report the results according the proof taken from the respondents. Results from the study, it is not only dependent on the lecturer but also a student to shape a good collaborative learning practice. Rational concepts and pattern to achieve these targets be clear right from the beginning and may be good seen by a number of proposals submitted and include how the higher learning institution has trained with ongoing lectures online. Advantages of online collaborative learning show that lecturers should be trained effectively. Studies have seen that the lecturer aware of online collaborative learning. This positive attitude will encourage the higher learning institution to continue to give the knowledge and skills required.

Carbon Nanotubes Synthesized Using Sugar Cane as a Percursor

This article deals with the carbon nanotubes (CNT) synthesized from a novel precursor, sugar cane and Anodic Aluminum Oxide (AAO). The objective was to produce CNTs to be used as catalyst supports for Proton Exchange Membranes. The influence of temperature, inert gas flow rate and concentration of the precursor is presented. The CNTs prepared were characterized using TEM, XRD, Raman Spectroscopy, and the surface area determined by BET. The results show that it is possible to form CNT from sugar cane by pyrolysis and the CNTs are the type multi-walled carbon nanotubes. The MWCNTs are short and closed at the two ends with very small surface area of SBET= 3.691m,/g.

Chatter Stability Characterization of Full-Immersion End-Milling Using a Generalized Modified Map of the Full-Discretization Method, Part 1: Validation of Results and Study of Stability Lobes by Numerical Simulation

The objective in this work is to generate and discuss the stability results of fully-immersed end-milling process with parameters; tool mass m=0.0431kg,tool natural frequency ωn = 5700 rads^-1, damping factor ξ=0.002 and workpiece cutting coefficient C=3.5x10^7 Nm^-7/4. Different no of teeth is considered for the end-milling. Both 1-DOF and 2-DOF chatter models of the system are generated on the basis of non-linear force law. Chatter stability analysis is carried out using a modified form (generalized for both 1-DOF and 2-DOF models) of recently developed method called Full-discretization. The full-immersion three tooth end-milling together with higher toothed end-milling processes has secondary Hopf bifurcation lobes (SHBL’s) that exhibit one turning (minimum) point each. Each of such SHBL is demarcated by its minimum point into two portions; (i) the Lower Spindle Speed Portion (LSSP) in which bifurcations occur in the right half portion of the unit circle centred at the origin of the complex plane and (ii) the Higher Spindle Speed Portion (HSSP) in which bifurcations occur in the left half portion of the unit circle. Comments are made regarding why bifurcation lobes should generally get bigger and more visible with increase in spindle speed and why flip bifurcation lobes (FBL’s) could be invisible in the low-speed stability chart but visible in the high-speed stability chart of the fully-immersed three-tooth miller.

Dual-Network Memory Model for Temporal Sequences

In neural networks, when new patters are learned by a network, they radically interfere with previously stored patterns. This drawback is called catastrophic forgetting. We have already proposed a biologically inspired dual-network memory model which can much reduce this forgetting for static patterns. In this model, information is first stored in the hippocampal network, and thereafter, it is transferred to the neocortical network using pseudopatterns. Because temporal sequence learning is more important than static pattern learning in the real world, in this study, we improve our conventional  dual-network memory model so that it can deal with temporal sequences without catastrophic forgetting. The computer simulation results show the effectiveness of the proposed dual-network memory model.  

Consumer Online Shopping Behavior: The Effect of Internet Marketing Environment, Product Characteristics, Familiarity and Confidence, and Promotional Offer

Online shopping enables consumers to search for information and purchase products or services through direct interaction with online store. This study aims to examine the effect of Internet marketing environment, product characteristics, familiarity and confidence, and promotional offers on consumer online shopping behavior. 200 questionnaires were distributed to the respondents, who are students and staff at a public university in the Federal Territory of Labuan, Malaysia, following simple random sampling as a means of data collection. Multiple regression analysis was used as a statistical measure to determine the strength of the relationship between one dependent variable and a series of other independent variables. Results revealed that familiarity and confidence was found to greatly influence consumer online shopping behavior followed by promotional offers. A clear understanding of consumer online shopping behavior can help marketing managers predict the online shopping rate and evaluate the future growth of online commerce.

Optical Switching Based On Bragg Solitons in A Nonuniform Fiber Bragg Grating

In this paper, we consider the nonlinear pulse propagation through a nonuniform birefringent fiber Bragg grating (FBG) whose index modulation depth varies along the propagation direction. Here, the pulse propagation is governed by the nonlinear birefringent coupled mode (NLBCM) equations. To form the Bragg soliton outside the photonic bandgap (PBG), the NLBCM equations are reduced to the well known NLS type equation by multiple scale analysis. As we consider the pulse propagation in a nonuniform FBG, the pulse propagation outside the PBG is governed by inhomogeneous NLS (INLS) rather than NLS. We then discuss the formation of soliton in the FBG known as Bragg soliton whose central frequency lies outside but close to the PBG of the grating structure. Further, we discuss Bragg soliton compression due to a delicate balance between the SPM and the varying grating induced dispersion. In addition, Bragg soliton collision, Bragg soliton switching and possible logic gates have also been discussed.

Challenges and Opportunities in Nuclear Energy: Promising Option in Turkey?

Dramatic growth in the population requires a parallel increase in the total installed capacity of electricity. Diversity, independency of resources and global warming call for installing renewable and nuclear energy plants. Several types of energy plants exist in Turkey; however, nuclear energy with its several attractive features is not utilized at all. This study presents the available energy resources in Turkey and reviews major challenges and opportunities in nuclear energy. At the end of this paper, some conclusions are stated.

Comparative Analysis of Turbulent Plane Jets from a Sharp-Edged Orifice, a Beveled-Edge Orifice and a Radially Contoured Nozzle

This article investigates through experiments the flow characteristics of plane jets from sharp-edged orifice-plate, beveled-edge and radially contoured nozzle. The first two configurations exhibit saddle-backed velocity profiles while the third shows a top-hat. A vena contracta is found for the jet emanating from orifice at x/h » 3 while the contoured case displays a potential core extending to the range x/h = 5. A spurt in jet pressure on the centerline supports vena contracta for the orifice-jet. Momentum thicknesses and integral length scales elongate linearly with x although the growth of the shear-layer and large-scale eddies for the orifice are greater than the contoured case. The near-field spectrum exhibits higher frequency of the primary eddies that concur with enhanced turbulence intensity. Importantly, highly “turbulent” state of the orifice-jet prevails in the far-field where the spectra confirm more energetic secondary eddies associated with greater flapping amplitude of the orifice-jet.

Analysis of Meteorological Drought Using Standardized Precipitation Index – A Case Study of Puruliya District, West Bengal, India

Drought is universally acknowledged as a phenomenon associated with scarcity of water. The Standardized Precipitation Index (SPI) expresses the actual rainfall as standardized departure from rainfall probability distribution function. In this study severity and spatial pattern of meteorological drought was analyzed in the Puruliya District, West Bengal, India using multi-temporal SPI. Daily gridded data for the period 1971-2005 from 4 rainfall stations surrounding the study area were collected from IMD, Pune, and used in the analysis. Geographic Information System (GIS) was used to generate drought severity maps for the different time scales and months of the year. Temporal SPI graphs show that the maximum SPI value (extreme drought) occurs in station 3 in the year 1993. Mild and moderate droughts occur in the central portion of the study area. Severe and extreme droughts were mostly found in the northeast, northwest and the southwest part of the region.

Spark Breakdown Voltage and Surface Degradation of Multiwalled Carbon Nanotube Electrode Surfaces

Silicon substrates coated with multiwalled carbon nanotubes (MWCNTs) were experimentally investigated to determine spark breakdown voltages relative to uncoated surfaces, the degree of surface degradation associated with the spark discharge, and techniques to minimize the surface degradation. The results may be applicable to instruments or processes that use MWCNT as a means of increasing local electric field strength and where spark breakdown is a possibility that might affect the devices’ performance or longevity. MWCNTs were shown to reduce the breakdown voltage of a 1mm gap in air by 30-50%. The relative decrease in breakdown voltage was maintained over gap distances of 0.5 to 2mm and gauge pressures of 0 to 4 bar. Degradation of the MWCNT coated surfaces was observed. Several techniques to improve durability were investigated. These included: chromium and gold-palladium coatings, tube annealing, and embedding clusters of MWCNT in a ceramic matrix.

Compliance Modelling and Optimization of Kerf during WEDM of Al7075/SiCP Metal Matrix Composite

This investigation presents the formulation of kerf (width of slit) and optimal control parameter settings of wire electrochemical discharge machining which results minimum possible kerf while machining Al7075/SiCp MMCs. WEDM is proved its efficiency and effectiveness to cut the hard ceramic reinforced MMCs within the permissible budget. Among the distinct performance measures of WEDM process, kerf is an important performance characteristic which determines the dimensional accuracy of the machined component while producing high precision components. The lack of available of the machinability information such advanced MMCs result the more experimentation in the manufacturing industries. Therefore, extensive experimental investigations are essential to provide the database of effect of various control parameters on the kerf while machining such advanced MMCs in WEDM. Literature reviled the significance some of the electrical parameters which are prominent on kerf for machining distinct conventional materials. However, the significance of reinforced particulate size and volume fraction on kerf is highlighted in this work while machining MMCs along with the machining parameters of pulse-on time, pulse-off time and wire tension. Usually, the dimensional tolerances of machined components are decided at the design stage and a machinist pay attention to produce the required dimensional tolerances by setting appropriate machining control variables. However, it is highly difficult to determine the optimal machining settings for such advanced materials on the shop floor. Therefore, in the view of precision of cut, kerf (cutting width) is considered as the measure of performance for the model. It was found from the literature that, the machining conditions of higher fractions of large size SiCp resulting less kerf where as high values of pulse-on time result in a high kerf. A response surface model is used to predict the relative significance of various control variables on kerf. Consequently, a powerful artificial intelligence called genetic algorithms (GA) is used to determine the best combination of the control variable settings. In the next step the conformation test was conducted for the optimal parameter settings and found good agreement between the GA kerf and measured kerf. Hence, it is clearly reveal that the effectiveness and accuracy of the developed model and program to analyze the kerf and to determine its optimal process parameters. The results obtained in this work states that, the resulted optimized parameters are capable of machining the Al7075/SiCp MMCs more efficiently and with better dimensional accuracy.

Degree of Milling Effects on the Sorghum (Sorghum bicolor) Flours, Physicochemical Properties and Kinetics of Starch Digestion

Two types of crushing were applied to grains of red sorghum: manual crushing using a mortar and pestle of kitchen and mechanical crushing using a hammer mill. The flours obtained at the end of these various crushing were filtered and subdivided in different fractions according to the diameters of the mesh of the sieves (0.16mm; 0.25mm; 0.315mm; 0.4mm, and 0.63mm…). Some physical, chemical and nutritional traits of these flours were evaluated using Association of Official Analytical Chemists (AOAC). In vitro digestibility of these flours was also studied with freezing of flour 1% like substrate and α-amylase from B. licheniformis (E.C.3.2.1.1; Megazyme, Wicklow, Ireland). The results revealed that the batches of flours which have the finest diameters as 0.16mm; 0.25mm are the richest one in nutrients and are also the most digestible. Also mechanical crushing is the best mean to obtain significant amount of flours. In conclusion, the type of crushing and the size of the particles have an impact on the final concentration of some nutrients of the flours obtained. Indeed, the finest particles (0.16mm – 0.25mm 0.315mm) obtained after sifting of the flours are more nutritive and have a better digestibility than others size. So the finest particles could be advised for management of cereals namely the sorghum for the production of the infantile foods.

Predicting Dispersion Coefficient in Free-Flowing Zones of Rivers by Genetic Programming

Transient storage zones along the flow paths of rivers have great influence on the dispersion of pollutants that are either accidentally or otherwise led into them. The speed with which these pollution clouds get transported and dispersed downstream is, to a large extent, explained by the longitudinal dispersion coefficients in the free-flowing zones of rivers (Kf). In the present work, a new empirical expression for Kf has been derived employing genetic programming (GP) on published dispersion data. The proposed expression uses few hydraulic and geometric characteristics of a river that are readily available to field engineers. Based on various performance indices, the proposed expression is found superior to other existing expression for Kf.

Evaluating and Measuring the Performance Parameters of Agricultural Wheels

Evaluating and measuring the performance parameters of wheels and tillage equipments under controlled conditions obligates the use of soil bin facility. In this research designing, constructing and evaluating a single-wheel tester has been studied inside a soil bin. The tested wheel was directly driven by the electric motor. Vertical load was applied by a power bolt on wheel. This tester can measure required draft force, the depth of tire sinkage, contact area between wheel and soil, and soil stress at different depths and in the both alongside and perpendicular to the direction of traversing. In order to evaluate the system preparation, traction force was measured by the connected S-shaped load cell as arms between the wheel-tester and carriage. Treatments of forward speed, slip, and vertical load at a constant pressure were investigated in a complete randomized block design. The results indicated that the traction force increased at constant wheel load. The results revealed that the maximum traction force was observed within the %15 of slip.

Suitability of Newsprint and Kraft Papers as Materials for Cement Bonded Ceiling Board

The suitability of Newsprint and Kraft papers for the production of cement bonded ceiling board was investigated. Sample boards were produced from newsprint paper (100%), mixture of newsprint and Kraft paper (50:50) and Kraft paper (100%) at 1:1, 2:1 and 3:1 cement/paper mixing ratio respectively with 3% additive concentration of calcium chloride (CaCl2). Density, flexural and thickness swelling properties of the boards were investigated. The effects of paper type and mixing ratio on the physical and mechanical properties were also examined. The bending properties of the board which include Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) increased linearly with increase in density. Modulus of rupture of boards increased as the density and mixing ratio increased. The thickness swelling property for the two paper types decreased as the board density and mixing ratio increased. Boards made from Kraft paper recorded higher strength values than the ones made from recycled newsprint paper while the mixture of kraft and newsprint papers had the best surface finish. The result of the study will help in managing the large quality of waste from paper converting/carton industry and that the ceiling boards produced could be installed with clout nails or used with suspended ceiling fittings.

Description of Unsteady Flows in the Cuboid Container

This part of study deals with description of unsteady isothermal melt flow in the container with cuboid shape. This melt flow is driven by rotating magnetic field. Input data (instantaneous velocities, grid coordinates and Lorentz forces) were obtained from in-house CFD code (called NS-FEM3D) which uses DDES method of computing. Description of the flow was performed by contours of Lorentz forces and caused velocity field. Taylor magnetic numbers of the flow were used 1.10^6, 5.10^6 and 1.10^7, flow was in 3D turbulent flow regime.

Investigating the Areas of Self-Reflection in Malaysian Students’ Personal Blogs: A Case Study

This case study investigates the areas of self-reflection through the written content of four university students’ blogs. The study was undertaken to explore the categories of self-reflection in relation to the use of blogs. Data collection methods included downloading students’ blog entries and recording individual interviews to further support the data. Data was analyzed using computer assisted qualitative data analysis software, Nvivo, to categories and code the data. The categories of self-reflection revealed in the findings showed that university students used blogs to reflect on (1) life in varsity, (2) emotions and feelings, (3) various relationships, (4) personal growth, (5) spirituality, (6) health conditions, (7) busyness with daily chores, (8) gifts for people and themselves and (9) personal interests. Overall, all four of the students had positive experiences and felt satisfied using blogs for self-reflection.

Cognitive Emotion Regulation in Children Is Attributable to Parenting Style, Not to Family Type and Child’s Gender

The study aimed to investigate whether cognitive emotion regulation in children varies with parenting style, family type and gender. Toward this end, cognitive emotion regulation and perceived parenting style of 206 school children were measured. Standard regression analyses of data revealed that the models were significant and explained 17.3% of the variance in adaptive emotion regulation (Adjusted R²=0.173; F=9.579, p

Effect of Various Pollen Sources to Ability Fruit Set and Quality in ‘Long Red B’ Wax Apple

By hand pollination was conducted to evaluated different pollen sources and their affects on fruit set and quality of wax apple. The following parameters were recorded: fruit set, seed set, fruit characteristics. Results showed that fruit set percentage with seed were significantly high in ‘Long Red B’ when ‘Black’, ‘Thyto’ were used as pollen parents. Pollen of ‘Black’, ‘Thyto’ resulted in high fruit weight, fruit diameter, fruit length, bigger flesh thickness, better total soluble solids as compared with other pollens. The observation of pollen-growth in vitro revealed that pollen germination at 15% sucrose concentration are required for optimum pollen germination with the high pollen germination were found in ‘Black’, ‘Thyto’. From the result, we concluded that ‘Black’, ‘Thyto’ were proved to be good pollinizers in ‘Long Red B’. Therefore, artificial cross-pollination using ‘Black’, ‘Thyto’ as pollinizers were strongly recommended for ‘Long Red B’ cultivar in wax apple orchard.