Microbial Assessment of Dairy Byproducts in Albania as a Basis for Consumer Safety

Dairy by-products are a fairly good environment for microorganisms due to their composition for their growth. Microbial populations have a significant impact in the production of cheese, butter, yogurt, etc. in terms of their organoleptic quality and at the same time some also cause their breakdown. In this paper, the microbiological contamination of soft cheese, butter and yogurt produced in the country (domestic) and imported is assessed, as an indicator of hygiene with impact on public health. The study was extended during September 2018-June 2019 and was divided into three periods, September-December, January-March, and April-June. During this study, a total of 120 samples were analyzed, of which 60 samples of cheese and butter locally produced, and 60 samples of imported soft cheese and butter productions. The microbial indicators analyzed are Staphylococcus aureus and E. coli. Analyzes have been conducted at the Food Safety Laboratory (FSIV) in Tirana in accordance with EU Regulation 2073/2005. Sampling was performed according to the specific international standards for these products (ISO 6887 and ISO 8261). Sampling and transport of samples were done under sterile conditions. Also, coding of samples was done to preserve the anonymity of subjects. After the analysis, the country's soft cheese products compared to imports were more contaminated with S. aureus and E. coli. Meanwhile, the imported butter samples that were analyzed, resulted within norms compared to domestic ones. Based on the results, it was concluded that the microbial quality of samples of cheese, butter and yogurt analyzed remains a real problem for hygiene in Albania. The study will also serve business operators in Albania to improve their work to ensure good hygiene on the basis of the HACCP plan and to provide a guarantee of consumer health.

Investigating Breakdowns in Human Robot Interaction: A Conversation Analysis Guided Single Case Study of a Human-Robot Communication in a Museum Environment

In a single case study, we show how a conversation analysis (CA) approach can shed light onto the sequential unfolding of human-robot interaction. Relying on video data, we are able to show that CA allows us to investigate the respective turn-taking systems of humans and a NAO robot in their dialogical dynamics, thus pointing out relevant differences. Our fine grained video analysis points out occurring breakdowns and their overcoming, when humans and a NAO-robot engage in a multimodally uttered multi-party communication during a sports guessing game. Our findings suggest that interdisciplinary work opens up the opportunity to gain new insights into the challenging issues of human robot communication in order to provide resources for developing mechanisms that enable complex human-robot interaction (HRI).

Application Reliability Method for Concrete Dams

Probabilistic risk analysis models are used to provide a better understanding of the reliability and structural failure of works, including when calculating the stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of reliability analysis methods including the methods used in engineering. It is in our case, the use of level 2 methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type first order risk method (FORM) and the second order risk method (SORM). By way of comparison, a level three method was used which generates a full analysis of the problem and involves an integration of the probability density function of random variables extended to the field of security using the Monte Carlo simulation method. Taking into account the change in stress following load combinations: normal, exceptional and extreme acting on the dam, calculation of the results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities, thus causing a significant decrease in strength, shear forces then induce a shift that threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case the increase of uplift in a hypothetical default of the drainage system.

Augmented Reality for Maintenance Operator for Problem Inspections

Current production-oriented factories need maintenance operators to work in shifts monitoring and inspecting complex systems and different equipment in the situation of mechanical breakdown. Augmented reality (AR) is an emerging technology that embeds data into the environment for situation awareness to help maintenance operators make decisions and solve problems. An application was designed to identify the problem of steam generators and inspection centrifugal pumps. The objective of this research was to find the best medium of AR and type of problem solving strategies among analogy, focal object method and mean-ends analysis. Two scenarios of inspecting leakage were temperature and vibration. Two experiments were used in usability evaluation and future innovation, which included decision-making process and problem-solving strategy. This study found that maintenance operators prefer build-in magnifier to zoom the components (55.6%), 3D exploded view to track the problem parts (50%), and line chart to find the alter data or information (61.1%). There is a significant difference in the use of analogy (44.4%), focal objects (38.9%) and mean-ends strategy (16.7%). The marked differences between maintainers and operators are of the application of a problem solving strategy. However, future work should explore multimedia information retrieval which supports maintenance operators for decision-making.

Proposed Alternative System to Existing Traffic Signal System

Alone with fast urbanization in world, traffic control became a big issue in urban construction. Having an efficient and reliable traffic control system is crucial to macro-traffic control. Traffic signal is used to manage conflicting requirement by allocating different sets of mutually compatible traffic movement during distinct time interval. Many approaches have been made proposed to solve this discrete stochastic problem. Recognizing the need to minimize right-of-way impacts while efficiently handling the anticipated high traffic volumes, the proposed alternative system gives effective design. This model allows for increased traffic capacity and reduces delays by eliminating a step in maneuvering through the freeway interchange. The concept proposed in this paper involves construction of bridges and ramps at intersection of four roads to control the vehicular congestion and to prevent traffic breakdown.

Spark Breakdown Voltage and Surface Degradation of Multiwalled Carbon Nanotube Electrode Surfaces

Silicon substrates coated with multiwalled carbon nanotubes (MWCNTs) were experimentally investigated to determine spark breakdown voltages relative to uncoated surfaces, the degree of surface degradation associated with the spark discharge, and techniques to minimize the surface degradation. The results may be applicable to instruments or processes that use MWCNT as a means of increasing local electric field strength and where spark breakdown is a possibility that might affect the devices’ performance or longevity. MWCNTs were shown to reduce the breakdown voltage of a 1mm gap in air by 30-50%. The relative decrease in breakdown voltage was maintained over gap distances of 0.5 to 2mm and gauge pressures of 0 to 4 bar. Degradation of the MWCNT coated surfaces was observed. Several techniques to improve durability were investigated. These included: chromium and gold-palladium coatings, tube annealing, and embedding clusters of MWCNT in a ceramic matrix.

Impact of Computer-Mediated Communication on Virtual Teams- Performance: An Empirical Study

In a complex project environment, project teams face multi-dimensional communication problems that can ultimately lead to project breakdown. Team Performance varies in Face-to-Face (FTF) environment versus groups working remotely in a computermediated communication (CMC) environment. A brief review of the Input_Process_Output model suggested by James E. Driskell, Paul H. Radtke and Eduardo Salas in “Virtual Teams: Effects of Technological Mediation on Team Performance (2003)", has been done to develop the basis of this research. This model theoretically analyzes the effects of technological mediation on team processes, such as, cohesiveness, status and authority relations, counternormative behavior and communication. An empirical study described in this paper has been undertaken to test the “cohesiveness" of diverse project teams in a multi-national organization. This study uses both quantitative and qualitative techniques for data gathering and analysis. These techniques include interviews, questionnaires for data collection and graphical data representation for analyzing the collected data. Computer-mediated technology may impact team performance because of difference in cohesiveness among teams and this difference may be moderated by factors, such as, the type of communication environment, the type of task and the temporal context of the team. Based on the reviewed model, sets of hypotheses are devised and tested. This research, reports on a study that compared team cohesiveness among virtual teams using CMC and non-CMC communication mediums. The findings suggest that CMC can help virtual teams increase team cohesiveness among their members, making CMC an effective medium for increasing productivity and team performance.

Artificial Accelerated Ageing Test of 22 kVXLPE Cable for Distribution System Applications in Thailand

This paper presents the experimental results on artificial ageing test of 22 kV XLPE cable for distribution system application in Thailand. XLPE insulating material of 22 kV cable was sliced to 60-70 μm in thick and was subjected to ac high voltage at 23 Ôùª C, 60 Ôùª C and 75 Ôùª C. Testing voltage was constantly applied to the specimen until breakdown. Breakdown voltage and time to breakdown were used to evaluate life time of insulating material. Furthermore, the physical model by J. P. Crine for predicts life time of XLPE insulating material was adopted as life time model and was calculated in order to compare the experimental results. Acceptable life time results were obtained from Crine-s model comparing with the experimental result. In addition, fourier transform infrared spectroscopy (FTIR) for chemical analysis and scanning electron microscope (SEM) for physical analysis were conducted on tested specimens.