A Hybrid Data Mining Method for the Medical Classification of Chest Pain

Data mining techniques have been used in medical research for many years and have been known to be effective. In order to solve such problems as long-waiting time, congestion, and delayed patient care, faced by emergency departments, this study concentrates on building a hybrid methodology, combining data mining techniques such as association rules and classification trees. The methodology is applied to real-world emergency data collected from a hospital and is evaluated by comparing with other techniques. The methodology is expected to help physicians to make a faster and more accurate classification of chest pain diseases.

The Leaves of a Tree

In this article, models based on quantitative analysis, physical geometry and regression analysis are established, by using analytic hierarchy process analysis, fuzzy cluster analysis, fuzzy photographic and data fitting. The reasons of various leaf shapes among different species and the differences between the leaf shapes on same tree have been solved by using software, such as Eviews, VB and Matlab. We also successfully estimate the leaf mass of a tree and the correlation with the tree profile.

Geographic Information System Mapping of Roadway Lighting and Traffic Accidents

The use of a Geographic Information System (GIS) in roadway lighting to show the state of street-lighting and nighttime accident is demonstrated. Geographical maps were generated showing colored streets based on how much of the street's length is illuminated. The night to daytime accidents ratio at intersections were found along with the state of lighting at those intersections. The result is a method to show the state of street-lighting at roads and intersections and a quick guide for decision makers to implement strategies for better street-lighting to reduce night time traffic accidents in a particular district.

Seamless Multicast Handover in Fmipv6-Based Networks

This paper proposes a fast tree join scheme to provide seamless multicast handover in the mobile networks based on the Fast Mobile IPv6 (FMIPv6). In the existing FMIPv6-based multicast handover scheme, the bi-directional tunnelling or the remote subscription is employed with the packet forwarding from the previous access router (AR) to the new AR. In general, the remote subscription approach is preferred to the bi-directional tunnelling one, since in the remote subscription scheme we can exploit an optimized multicast path from a multicast source to many mobile receivers. However, in the remote subscription scheme, if the tree joining operation takes a long time, the amount of data packets to be forwarded and buffered for multicast handover will increase, and thus the corresponding buffer may overflow, which results in severe packet losses. In order to reduce these costs associated with packet forwarding and buffering, this paper proposes the fast join to multicast tree, in which the new AR will join the multicast tree as fast as possible, so that the new multicast data packets can also arrive at the new AR, by which the packet forwarding and buffering costs can be reduced. From numerical analysis, it is shown that the proposed scheme can give better performance than the existing FMIPv6-based multicast handover schemes in terms of the multicast packet delivery costs.

Towards Clustering of Web-based Document Structures

Methods for organizing web data into groups in order to analyze web-based hypertext data and facilitate data availability are very important in terms of the number of documents available online. Thereby, the task of clustering web-based document structures has many applications, e.g., improving information retrieval on the web, better understanding of user navigation behavior, improving web users requests servicing, and increasing web information accessibility. In this paper we investigate a new approach for clustering web-based hypertexts on the basis of their graph structures. The hypertexts will be represented as so called generalized trees which are more general than usual directed rooted trees, e.g., DOM-Trees. As a important preprocessing step we measure the structural similarity between the generalized trees on the basis of a similarity measure d. Then, we apply agglomerative clustering to the obtained similarity matrix in order to create clusters of hypertext graph patterns representing navigation structures. In the present paper we will run our approach on a data set of hypertext structures and obtain good results in Web Structure Mining. Furthermore we outline the application of our approach in Web Usage Mining as future work.

The Use of Complex Contourlet Transform on Fusion Scheme

Image fusion aims to enhance the perception of a scene by combining important information captured by different sensors. Dual-Tree Complex Wavelet (DT-CWT) has been thouroughly investigated for image fusion, since it takes advantages of approximate shift invariance and direction selectivity. But it can only handle limited direction information. To allow a more flexible directional expansion for images, we propose a novel fusion scheme, referred to as complex contourlet transform (CCT). It successfully incorporates directional filter banks (DFB) into DT-CWT. As a result it efficiently deal with images containing contours and textures, whereas it retains the property of shift invariance. Experimental results demonstrated that the method features high quality fusion performance and can facilitate many image processing applications.

Indoor and Outdoor Concentration of Particulate Matter at Domestic Homes

Particulate matter (PM) in ambient air is responsible for adverse health effects in adults and children. Relatively little is known about the concentrations, sources and health effects of PM in indoor air. A monitoring study was conducted in Ankara by three campaigns in order to measure PM levels in indoor and outdoor environments to identify and quantify associations between sources and concentrations. Approximately 82 homes (1st campaign for 42, 2nd campaign for 12, and 3rd campaign for 28), three rooms (living room, baby-s room and living room used as a baby-s room) and outdoor ambient at each home were sampled with Grimm Environmental Dust Monitoring (EDM) 107, during different seasonal periods of 2011 and 2012. In this study, the relationship between indoor and outdoor PM levels for particulate matter less than 10 micrometer (.m) (PM10), particulate matter less than 2.5.m (PM2.5) and particulate matter less than 1.0.m (PM1) were investigated. The mean concentration of PM10, PM2.5, and PM1.0 at living room used as baby-s room is higher than living and baby-s room (or bedroom) for three sampling campaigns. It is concluded that the household activities and environmental conditions are very important for PM concentrations in the indoor environments during the sampling periods. The amount of smokers, being near a main street and/or construction activities increased the PM concentration. This study is based on the assessment the relationship between indoor and outdoor PM levels and the household activities and environmental conditions

A New Model for Discovering XML Association Rules from XML Documents

The inherent flexibilities of XML in both structure and semantics makes mining from XML data a complex task with more challenges compared to traditional association rule mining in relational databases. In this paper, we propose a new model for the effective extraction of generalized association rules form a XML document collection. We directly use frequent subtree mining techniques in the discovery process and do not ignore the tree structure of data in the final rules. The frequent subtrees based on the user provided support are split to complement subtrees to form the rules. We explain our model within multi-steps from data preparation to rule generation.

Measuring the Performance of the Accident Reductions: Evidence from Izmir City

Traffic enforcement units (the Police) are partly responsible for the severity and frequency of the traffic accidents via the effectiveness of their safety measures. The Police claims that the reductions in accidents and their severities occur largely by their timely interventions at the black spots, through traffic management or temporary changes in the road design (guiding, reducing speeds and eliminating sight obstructions, etc.). Yet, some other external factors than the Police measures may intervene into which such claims require a statistical confirmation. In order to test the net impact of the Police contribution in the reduction of the number of crashes, Chi square test was applied for 25 spots (streets and intersections) and an average evaluation was achieved for general conclusion in the case study of Izmir city. Separately, the net impact of economic crisis in the reduction of crashes is assessed by the trend analysis for the case of the economic crisis with the probable reduction effects on the trip generation or modal choice. Finally, it was proven that the Police measures were effective to some degree as they claimed, though the economic crisis might have only negligible contribution to the reductions in the same period observed.

A Parallel Quadtree Approach for Image Compression using Wavelets

Wavelet transforms are multiresolution decompositions that can be used to analyze signals and images. Image compression is one of major applications of wavelet transforms in image processing. It is considered as one of the most powerful methods that provides a high compression ratio. However, its implementation is very time-consuming. At the other hand, parallel computing technologies are an efficient method for image compression using wavelets. In this paper, we propose a parallel wavelet compression algorithm based on quadtrees. We implement the algorithm using MatlabMPI (a parallel, message passing version of Matlab), and compute its isoefficiency function, and show that it is scalable. Our experimental results confirm the efficiency of the algorithm also.

Choosing R-tree or Quadtree Spatial DataIndexing in One Oracle Spatial Database System to Make Faster Showing Geographical Map in Mobile Geographical Information System Technology

The latest Geographic Information System (GIS) technology makes it possible to administer the spatial components of daily “business object," in the corporate database, and apply suitable geographic analysis efficiently in a desktop-focused application. We can use wireless internet technology for transfer process in spatial data from server to client or vice versa. However, the problem in wireless Internet is system bottlenecks that can make the process of transferring data not efficient. The reason is large amount of spatial data. Optimization in the process of transferring and retrieving data, however, is an essential issue that must be considered. Appropriate decision to choose between R-tree and Quadtree spatial data indexing method can optimize the process. With the rapid proliferation of these databases in the past decade, extensive research has been conducted on the design of efficient data structures to enable fast spatial searching. Commercial database vendors like Oracle have also started implementing these spatial indexing to cater to the large and diverse GIS. This paper focuses on the decisions to choose R-tree and quadtree spatial indexing using Oracle spatial database in mobile GIS application. From our research condition, the result of using Quadtree and R-tree spatial data indexing method in one single spatial database can save the time until 42.5%.

A High-Speed Multiplication Algorithm Using Modified Partial Product Reduction Tree

Multiplication algorithms have considerable effect on processors performance. A new high-speed, low-power multiplication algorithm has been presented using modified Dadda tree structure. Three important modifications have been implemented in inner product generation step, inner product reduction step and final addition step. Optimized algorithms have to be used into basic computation components, such as multiplication algorithms. In this paper, we proposed a new algorithm to reduce power, delay, and transistor count of a multiplication algorithm implemented using low power modified counter. This work presents a novel design for Dadda multiplication algorithms. The proposed multiplication algorithm includes structured parts, which have important effect on inner product reduction tree. In this paper, a 1.3V, 64-bit carry hybrid adder is presented for fast, low voltage applications. The new 64-bit adder uses a new circuit to implement the proposed carry hybrid adder. The new adder using 80 nm CMOS technology has been implemented on 700 MHz clock frequency. The proposed multiplication algorithm has achieved 14 percent improvement in transistor count, 13 percent reduction in delay and 12 percent modification in power consumption in compared with conventional designs.

Integrating Context Priors into a Decision Tree Classification Scheme

Scene interpretation systems need to match (often ambiguous) low-level input data to concepts from a high-level ontology. In many domains, these decisions are uncertain and benefit greatly from proper context. This paper demonstrates the use of decision trees for estimating class probabilities for regions described by feature vectors, and shows how context can be introduced in order to improve the matching performance.

Prediction of Reusability of Object Oriented Software Systems using Clustering Approach

In literature, there are metrics for identifying the quality of reusable components but the framework that makes use of these metrics to precisely predict reusability of software components is still need to be worked out. These reusability metrics if identified in the design phase or even in the coding phase can help us to reduce the rework by improving quality of reuse of the software component and hence improve the productivity due to probabilistic increase in the reuse level. As CK metric suit is most widely used metrics for extraction of structural features of an object oriented (OO) software; So, in this study, tuned CK metric suit i.e. WMC, DIT, NOC, CBO and LCOM, is used to obtain the structural analysis of OO-based software components. An algorithm has been proposed in which the inputs can be given to K-Means Clustering system in form of tuned values of the OO software component and decision tree is formed for the 10-fold cross validation of data to evaluate the in terms of linguistic reusability value of the component. The developed reusability model has produced high precision results as desired.

Target Detection using Adaptive Progressive Thresholding Based Shifted Phase-Encoded Fringe-Adjusted Joint Transform Correlator

A new target detection technique is presented in this paper for the identification of small boats in coastal surveillance. The proposed technique employs an adaptive progressive thresholding (APT) scheme to first process the given input scene to separate any objects present in the scene from the background. The preprocessing step results in an image having only the foreground objects, such as boats, trees and other cluttered regions, and hence reduces the search region for the correlation step significantly. The processed image is then fed to the shifted phase-encoded fringe-adjusted joint transform correlator (SPFJTC) technique which produces single and delta-like correlation peak for a potential target present in the input scene. A post-processing step involves using a peak-to-clutter ratio (PCR) to determine whether the boat in the input scene is authorized or unauthorized. Simulation results are presented to show that the proposed technique can successfully determine the presence of an authorized boat and identify any intruding boat present in the given input scene.

Processing Web-Cam Images by a Neuro-Fuzzy Approach for Vehicular Traffic Monitoring

Traffic management in an urban area is highly facilitated by the knowledge of the traffic conditions in every street or highway involved in the vehicular mobility system. Aim of the paper is to propose a neuro-fuzzy approach able to compute the main parameters of a traffic system, i.e., car density, velocity and flow, by using the images collected by the web-cams located at the crossroads of the traffic network. The performances of this approach encourage its application when the traffic system is far from the saturation. A fuzzy model is also outlined to evaluate when it is suitable to use more accurate, even if more time consuming, algorithms for measuring traffic conditions near to saturation.

Pattern Matching Based on Regular Tree Grammars

Pattern matching based on regular tree grammars have been widely used in many areas of computer science. In this paper, we propose a pattern matcher within the framework of code generation, based on a generic and a formalized approach. According to this approach, parsers for regular tree grammars are adapted to a general pattern matching solution, rather than adapting the pattern matching according to their parsing behavior. Hence, we first formalize the construction of the pattern matches respective to input trees drawn from a regular tree grammar in a form of the so-called match trees. Then, we adopt a recently developed generic parser and tightly couple its parsing behavior with such construction. In addition to its generality, the resulting pattern matcher is characterized by its soundness and efficient implementation. This is demonstrated by the proposed theory and by the derived algorithms for its implementation. A comparison with similar and well-known approaches, such as the ones based on tree automata and LR parsers, has shown that our pattern matcher can be applied to a broader class of grammars, and achieves better approximation of pattern matches in one pass. Furthermore, its use as a machine code selector is characterized by a minimized overhead, due to the balanced distribution of the cost computations into static ones, during parser generation time, and into dynamic ones, during parsing time.

Predicting Protein Function using Decision Tree

The drug discovery process starts with protein identification because proteins are responsible for many functions required for maintenance of life. Protein identification further needs determination of protein function. Proposed method develops a classifier for human protein function prediction. The model uses decision tree for classification process. The protein function is predicted on the basis of matched sequence derived features per each protein function. The research work includes the development of a tool which determines sequence derived features by analyzing different parameters. The other sequence derived features are determined using various web based tools.

A Generic and Extensible Spidergon NoC

The Globally Asynchronous Locally Synchronous Network on Chip (GALS NoC) is the most efficient solution that provides low latency transfers and power efficient System on Chip (SoC) interconnect. This study presents a GALS and generic NoC architecture based on a configurable router. This router integrates a sophisticated dynamic arbiter, the wormhole routing technique and can be configured in a manner that allows it to be used in many possible NoC topologies such as Mesh 2-D, Tree and Polygon architectures. This makes it possible to improve the quality of service (QoS) required by the proposed NoC. A comparative performances study of the proposed NoC architecture, Tore architecture and of the most used Mesh 2D architecture is performed. This study shows that Spidergon architecture is characterised by the lower latency and the later saturation. It is also shown that no matter what the number of used links is raised; the Links×Diameter product permitted by the Spidergon architecture remains always the lower. The only limitation of this architecture comes from it-s over cost in term of silicon area.

Learning User Keystroke Patterns for Authentication

Keystroke authentication is a new access control system to identify legitimate users via their typing behavior. In this paper, machine learning techniques are adapted for keystroke authentication. Seven learning methods are used to build models to differentiate user keystroke patterns. The selected classification methods are Decision Tree, Naive Bayesian, Instance Based Learning, Decision Table, One Rule, Random Tree and K-star. Among these methods, three of them are studied in more details. The results show that machine learning is a feasible alternative for keystroke authentication. Compared to the conventional Nearest Neighbour method in the recent research, learning methods especially Decision Tree can be more accurate. In addition, the experiment results reveal that 3-Grams is more accurate than 2-Grams and 4-Grams for feature extraction. Also, combination of attributes tend to result higher accuracy.