Data Mining Applied to the Predictive Model of Triage System in Emergency Department

The Emergency Department of a medical center in Taiwan cooperated to conduct the research. A predictive model of triage system is contracted from the contract procedure, selection of parameters to sample screening. 2,000 pieces of data needed for the patients is chosen randomly by the computer. After three categorizations of data mining (Multi-group Discriminant Analysis, Multinomial Logistic Regression, Back-propagation Neural Networks), it is found that Back-propagation Neural Networks can best distinguish the patients- extent of emergency, and the accuracy rate can reach to as high as 95.1%. The Back-propagation Neural Networks that has the highest accuracy rate is simulated into the triage acuity expert system in this research. Data mining applied to the predictive model of the triage acuity expert system can be updated regularly for both the improvement of the system and for education training, and will not be affected by subjective factors.

Slow, Wet and Catalytic Pyrolysis of Fowl Manure

This work presents the experimental results obtained at a pilot plant which works with a slow, wet and catalytic pyrolysis process of dry fowl manure. This kind of process mainly consists in the cracking of the organic matrix and in the following reaction of carbon with water, which is either already contained in the organic feed or added, to produce carbon monoxide and hydrogen. Reactions are conducted in a rotating reactor maintained at a temperature of 500°C; the required amount of water is about 30% of the dry organic feed. This operation yields a gas containing about 59% (on a volume basis) of hydrogen, 17% of carbon monoxide and other products such as light hydrocarbons (methane, ethane, propane) and carbon monoxide in lesser amounts. The gas coming from the reactor can be used to produce not only electricity, through internal combustion engines, but also heat, through direct combustion in industrial boilers. Furthermore, as the produced gas is devoid of both solid particles and pollutant species (such as dioxins and furans), the process (in this case applied to fowl manure) can be considered as an optimal way for the disposal and the contemporary energetic valorization of organic materials, in such a way that is not damaging to the environment.

Energy Efficiency Testing of Fluorescent and WOLED (White Organic LED)

WOLED is widely used as lighting for high efficacy and little power consumption. In this research, power factor testing between WOLED and fluorescent lamp to see which one is more efficient in consuming energy. Since both lamps use semiconductor components, so calculation of the power factor need to consider the effects of harmonics. Harmonic make bigger losses. The study is conducted by comparing the value of the power factor regardless of harmonics (DPF) and also by included the harmonics (TPF). The average value of DPF of fluorescent is 0.953 while WOLED is 0.972. The average value of TPF of fluorescent is 0.717 whereas WOLED is 0.933. So from the review of power factor WOLED is more energy efficient than fluorescent lamp.

Greening the Greyfields: Unlocking the Redevelopment Potential of the Middle Suburbs in Australian Cities

Pressures for urban redevelopment are intensifying in all large cities. A new logic for urban development is required – green urbanism – that provides a spatial framework for directing population and investment inwards to brownfields and greyfields precincts, rather than outwards to the greenfields. This represents both a major opportunity and a major challenge for city planners in pluralist liberal democracies. However, plans for more compact forms of urban redevelopment are stalling in the face of community resistance. A new paradigm and spatial planning platform is required that will support timely multi-level and multi-actor stakeholder engagement, resulting in the emergence of consensus plans for precinct-level urban regeneration capable of more rapid implementation. Using Melbourne, Australia as a case study, this paper addresses two of the urban intervention challenges – where and how – via the application of a 21st century planning tool ENVISION created for this purpose.

Some Mechanical Properties of Cement Stabilized Malaysian Soft Clay

Soft clays are defined as cohesive soil whose water content is higher than its liquid limits. Thus, soil-cement mixing is adopted to improve the ground conditions by enhancing the strength and deformation characteristics of the soft clays. For the above mentioned reasons, a series of laboratory tests were carried out to study some fundamental mechanical properties of cement stabilized soft clay. The test specimens were prepared by varying the portion of ordinary Portland cement to the soft clay sample retrieved from the test site of RECESS (Research Centre for Soft Soil). Comparisons were made for both homogeneous and columnar system specimens by relating the effects of cement stabilized clay of for 0, 5 and 10 % cement and curing for 3, 28 and 56 days. The mechanical properties examined included one-dimensional compressibility and undrained shear strength. For the mechanical properties, both homogeneous and columnar system specimens were prepared to examine the effect of different cement contents and curing periods on the stabilized soil. The one-dimensional compressibility test was conducted using an oedometer, while a direct shear box was used for measuring the undrained shear strength. The higher the value of cement content, the greater is the enhancement of the yield stress and the decrease of compression index. The value of cement content in a specimen is a more active parameter than the curing period.

Design Neural Network Controller for Mechatronic System

The main goal of the study is to analyze all relevant properties of the electro hydraulic systems and based on that to make a proper choice of the neural network control strategy that may be used for the control of the mechatronic system. A combination of electronic and hydraulic systems is widely used since it combines the advantages of both. Hydraulic systems are widely spread because of their properties as accuracy, flexibility, high horsepower-to-weight ratio, fast starting, stopping and reversal with smoothness and precision, and simplicity of operations. On the other hand, the modern control of hydraulic systems is based on control of the circuit fed to the inductive solenoid that controls the position of the hydraulic valve. Since this circuit may be easily handled by PWM (Pulse Width Modulation) signal with a proper frequency, the combination of electrical and hydraulic systems became very fruitful and usable in specific areas as airplane and military industry. The study shows and discusses the experimental results obtained by the control strategy of neural network control using MATLAB and SIMULINK [1]. Finally, the special attention was paid to the possibility of neuro-controller design and its application to control of electro-hydraulic systems and to make comparative with other kinds of control.

Adsorption of Lead(II) and Cadmium(II) Ions from Aqueous Solutions by Adsorption on Activated Carbon Prepared from Cashew Nut Shells

Cashew nut shells were converted into activated carbon powders using KOH activation plus CO2 gasification at 1027 K. The increase both of impregnation ratio and activation time, there was swiftly the development of mesoporous structure with increasing of mesopore volume ratio from 20-28% and 27-45% for activated carbon with ratio of KOH per char equal to 1 and 4, respectively. Activated carbon derived from KOH/char ratio equal to 1 and CO2 gasification time from 20 to 150 minutes were exhibited the BET surface area increasing from 222 to 627 m2.g-1. And those were derived from KOH/char ratio of 4 with activation time from 20 to 150 minutes exhibited high BET surface area from 682 to 1026 m2.g-1. The adsorption of Lead(II) and Cadmium(II) ion was investigated. This adsorbent exhibited excellent adsorption for Lead(II) and Cadmium(II) ion. Maximum adsorption presented at 99.61% at pH 6.5 and 98.87% at optimum conditions. The experimental data was calculated from Freundlich isotherm and Langmuir isotherm model. The maximum capacity of Pb2+ and Cd2+ ions was found to be 28.90 m2.g-1 and 14.29 m2.g-1, respectively.

Standardization of Ayurvedic Formulation (Marichyadi Vati) Using HPLC and HPTLC Methods

The present investigation was aimed to develop methodology for the standardization of Marichyadi Vati and its raw materials. Standardization was carried using systematic Pharmacognostical and physicochemical parameters as per WHO guidelines. The detailed standardization of Marichyadi Vati, it is concluded that there are no major differences prevailed in the quality of marketed products and laboratory samples of Marichyadi Vati. However, market samples showed slightly better amount of Piperine than the laboratory sample by both methods. This is the first attempt to generate complete set of standards required for the Marichyadi Vati.

Comparative Analysis of Total Phenolic Content in Sea Buckthorn Wine and Other Selected Fruit Wines

This is the first report from India on a beverage resulting from alcoholic fermentation of the juice of sea buckthorn (Hippophae rhamnoides L) using lab isolated yeast strain. The health promoting potential of the product was evaluated based on its total phenolic content. The most important finding was that under the present fermentation condition, the total phenolic content of the wine product was 689 mg GAE/L. Investigation of influence of bottle ageing on the sea buckthorn wine showed a slight decrease in the phenolic content (534 m mg GAE/L). This study also includes the comparative analysis of the phenolic content of wines from other selected fruit juices like grape, apple and black currant. KeywordsAlcoholic fermentation, Hippophae, Total phenolic content, Wine

Identification of Phenolic Contents in Malaysian Variety of Pummelo (Citrus Grandis L. Osbeck) Fruit Juice Using HPLC-DAD

Pummelo is known to be the largest of all citrus fruits, with expected ratio of 2:1 (w/v) of producing juice, is an attractive opportunity for Malaysia to expand pummelo-s influence and marketability over the international market of juices. The purpose of this study is to identify and quantify the phenolic compounds in two Malaysian varieties of pummelo fruit juice: Ledang (PO55) and Tambun (PO52). Identifications of polyphenols composition were done using High Performance Liquid Chromatography Diode Array Detection (HPLC-DAD). The phenolic compounds that were found in both varieties were hydroxycinnamic acids and flavonones. This study proved that Tambun variety has the highest antioxidant and phenolic compounds in comparison to Ledang variety. However, considerations have to be made to suit consumer-s taste bud and the amount of enzyme needed to clarify the juice for its marketability.

On the Symbol Based Decision Feedback Equalizer

Decision Feedback equalizers (DFEs) usually outperform linear equalizers for channels with intersymbol interference. However, the DFE performance is highly dependent on the availability of reliable past decisions. Hence, in coded systems, where reliable decisions are only available after decoding the full block, the performance of the DFE will be affected. A symbol based DFE is a DFE that only uses the decision after the block is decoded. In this paper we derive the optimal settings of both the feedforward and feedback taps of the symbol based equalizer. We present a novel symbol based DFE filterbank, and derive its taps optimal settings. We also show that it outperforms the classic DFE in terms of complexity and/or performance.

Silicon-Waveguide Based Silicide Schottky- Barrier Infrared Detector for on-Chip Applications

We prove detailed analysis of a waveguide-based Schottky barrier photodetector (SBPD) where a thin silicide film is put on the top of a silicon-on-insulator (SOI) channel waveguide to absorb light propagating along the waveguide. Taking both the confinement factor of light absorption and the wall scanning induced gain of the photoexcited carriers into account, an optimized silicide thickness is extracted to maximize the effective gain, thereby the responsivity. For typical lengths of the thin silicide film (10-20 Ðçm), the optimized thickness is estimated to be in the range of 1-2 nm, and only about 50-80% light power is absorbed to reach the maximum responsivity. Resonant waveguide-based SBPDs are proposed, which consist of a microloop, microdisc, or microring waveguide structure to allow light multiply propagating along the circular Si waveguide beneath the thin silicide film. Simulation results suggest that such resonant waveguide-based SBPDs have much higher repsonsivity at the resonant wavelengths as compared to the straight waveguidebased detectors. Some experimental results about Si waveguide-based SBPD are also reported.

Examination of Pre-Tender Budgeting Techniques for Mechanical and Electrical Services in Malaysia

The procurement and cost management approach adopted for mechanical and electrical (M&E) services in Malaysian construction industry have been criticized for its inefficiency. The study examined early cost estimating practices adopted for mechanical and electrical services (M&E) in Malaysia so as to understand the level of compliance of the current techniques with best practices. The methodology adopted for the study is a review of bidding documents used on both completed and on – going building projects awarded between 2008 – 2010 under 9th Malaysian Plan. The analysis revealed that, M&E services cost cannot be reliably estimated at pre-contract stage; the bidding techniques adopted for M&E services failed to provide uniform basis for contractors to submit tender; detailed measurement of items were not made which could complicate post contract cost control and financial management. The paper concluded that, there is need to follow a structured approach in determining the pre-contract cost estimate for M&E services which will serve as a virile tool for post contract cost control.

Route Training in Mobile Robotics through System Identification

Fundamental sensor-motor couplings form the backbone of most mobile robot control tasks, and often need to be implemented fast, efficiently and nevertheless reliably. Machine learning techniques are therefore often used to obtain the desired sensor-motor competences. In this paper we present an alternative to established machine learning methods such as artificial neural networks, that is very fast, easy to implement, and has the distinct advantage that it generates transparent, analysable sensor-motor couplings: system identification through nonlinear polynomial mapping. This work, which is part of the RobotMODIC project at the universities of Essex and Sheffield, aims to develop a theoretical understanding of the interaction between the robot and its environment. One of the purposes of this research is to enable the principled design of robot control programs. As a first step towards this aim we model the behaviour of the robot, as this emerges from its interaction with the environment, with the NARMAX modelling method (Nonlinear, Auto-Regressive, Moving Average models with eXogenous inputs). This method produces explicit polynomial functions that can be subsequently analysed using established mathematical methods. In this paper we demonstrate the fidelity of the obtained NARMAX models in the challenging task of robot route learning; we present a set of experiments in which a Magellan Pro mobile robot was taught to follow four different routes, always using the same mechanism to obtain the required control law.

Influence of Non-Structural Elements on Dynamic Response of Multi-Storey Rc Building to Mining Shock

In the paper the results of calculations of the dynamic response of a multi-storey reinforced concrete building to a strong mining shock originated from the main region of mining activity in Poland (i.e. the Legnica-Glogow Copper District) are presented. The representative time histories of accelerations registered in three directions were used as ground motion data in calculations of the dynamic response of the structure. Two variants of a numerical model were applied: the model including only structural elements of the building and the model including both structural and non-structural elements (i.e. partition walls and ventilation ducts made of brick). It turned out that non-structural elements of multi-storey RC buildings have a small impact of about 10 % on natural frequencies of these structures. It was also proved that the dynamic response of building to mining shock obtained in case of inclusion of all non-structural elements in the numerical model is about 20 % smaller than in case of consideration of structural elements only. The principal stresses obtained in calculations of dynamic response of multi-storey building to strong mining shock are situated on the level of about 30% of values obtained from static analysis (dead load).

Role of Oxidative DNA Damage in Pathogenesis of Diabetic Neuropathy

Oxidative stress is considered to be the cause for onset and the progression of type 2 diabetes mellitus (T2DM) and complications including neuropathy. It is a deleterious process that can be an important mediator of damage to cell structures: protein, lipids and DNA. Data suggest that in patients with diabetes and diabetic neuropathy DNA repair is impaired, which prevents effective removal of lesions. Objective: The aim of our study was to evaluate the association of the hOGG1 (326 Ser/Cys) and XRCC1 (194 Arg/Trp, 399 Arg/Gln) gene polymorphisms whose protein is involved in the BER pathway with DNA repair efficiency in patients with diabetes type 2 and diabetic neuropathy compared to the healthy subjects. Genotypes were determined by PCR-RFLP analysis in 385 subjects, including 117 with type 2 diabetes, 56 with diabetic neuropathy and 212 with normal glucose metabolism. The polymorphisms studied include codon 326 of hOGG1 and 194, 399 of XRCC1 in the base excision repair (BER) genes. Comet assay was carried out using peripheral blood lymphocytes from the patients and controls. This test enabled the evaluation of DNA damage in cells exposed to hydrogen peroxide alone and in the combination with the endonuclease III (Nth). The results of the analysis of polymorphism were statistically examination by calculating the odds ratio (OR) and their 95% confidence intervals (95% CI) using the ¤ç2-tests. Our data indicate that patients with diabetes mellitus type 2 (including those with neuropathy) had higher frequencies of the XRCC1 399Arg/Gln polymorphism in homozygote (GG) (OR: 1.85 [95% CI: 1.07-3.22], P=0.3) and also increased frequency of 399Gln (G) allele (OR: 1.38 [95% CI: 1.03-1.83], P=0.3). No relation to other polymorphisms with increased risk of diabetes or diabetic neuropathy. In T2DM patients complicated by neuropathy, there was less efficient repair of oxidative DNA damage induced by hydrogen peroxide in both the presence and absence of the Nth enzyme. The results of our study suggest that the XRCC1 399 Arg/Gln polymorphism is a significant risk factor of T2DM in Polish population. Obtained data suggest a decreased efficiency of DNA repair in cells from patients with diabetes and neuropathy may be associated with oxidative stress. Additionally, patients with neuropathy are characterized by even greater sensitivity to oxidative damage than patients with diabetes, which suggests participation of free radicals in the pathogenesis of neuropathy.

Robotics System Design for Assembly and Disassembly Process

In this paper is described a new conception of the Cartesian robot for automated assembly and also disassembly process. The advantage of this conception is the utilization the Cartesian assembly robot with its all peripheral automated devices for assembly of the assembled product. The assembly product in the end of the lifecycle can be disassembled with the same Cartesian disassembly robot with the use of the same peripheral automated devices and equipment. It is a new approach to problematic solving and development of the automated assembly systems with respect to lifecycle management of the assembly product and also assembly system with Cartesian robot. It is also important to develop the methodical process for design of automated assembly and disassembly system with Cartesian robot. Assembly and disassembly system use the same Cartesian robot input and output devices, assembly and disassembly units in one workplace with different application. Result of design methodology is the verification and proposition of real automated assembly and disassembly workplace with Cartesian robot for known verified model of assembled actuator.

Image Compression Using Hybrid Vector Quantization

In this paper, image compression using hybrid vector quantization scheme such as Multistage Vector Quantization (MSVQ) and Pyramid Vector Quantization (PVQ) are introduced. A combined MSVQ and PVQ are utilized to take advantages provided by both of them. In the wavelet decomposition of the image, most of the information often resides in the lowest frequency subband. MSVQ is applied to significant low frequency coefficients. PVQ is utilized to quantize the coefficients of other high frequency subbands. The wavelet coefficients are derived using lifting scheme. The main aim of the proposed scheme is to achieve high compression ratio without much compromise in the image quality. The results are compared with the existing image compression scheme using MSVQ.

Wavelet Based Qualitative Assessment of Femur Bone Strength Using Radiographic Imaging

In this work, the primary compressive strength components of human femur trabecular bone are qualitatively assessed using image processing and wavelet analysis. The Primary Compressive (PC) component in planar radiographic femur trabecular images (N=50) is delineated by semi-automatic image processing procedure. Auto threshold binarization algorithm is employed to recognize the presence of mineralization in the digitized images. The qualitative parameters such as apparent mineralization and total area associated with the PC region are derived for normal and abnormal images.The two-dimensional discrete wavelet transforms are utilized to obtain appropriate features that quantify texture changes in medical images .The normal and abnormal samples of the human femur are comprehensively analyzed using Harr wavelet.The six statistical parameters such as mean, median, mode, standard deviation, mean absolute deviation and median absolute deviation are derived at level 4 decomposition for both approximation and horizontal wavelet coefficients. The correlation coefficient of various wavelet derived parameters with normal and abnormal for both approximated and horizontal coefficients are estimated. It is seen that in almost all cases the abnormal show higher degree of correlation than normals. Further the parameters derived from approximation coefficient show more correlation than those derived from the horizontal coefficients. The parameters mean and median computed at the output of level 4 Harr wavelet channel was found to be a useful predictor to delineate the normal and the abnormal groups.

Relational Impact of Job Stress on Gender Based Managerial Effectiveness in Ghanaian Organizations

This study explored the relationship between occupational stress and the perceived effectiveness of men and women managers in Ghanaian organizations. The exploration is underlined by attempt to understand the degree to which male and female managers in Ghanaian organizations experience occupational stress at the workplace. The purpose is to examine the sources and extents of occupational stress experienced by male and female managers in Ghana. Data was collected using questionnaires and analyzed using both descriptive statistics and correlation analysis. The results showed that female managers in Ghana are more likely to report of more stress experiences in the workplace than their male counterparts. The female managers are more likely to perceive role conflict and alienation as job stressors while the male managers perceived blocked career as a major source of workplace stress. It is concluded that despite the female managers experiencing enormous level of occupational stress, there was no significant differences between their managerial effectiveness and that of the male.